본 연구는 소셜 네트워크 서비스인 페이스북에서 우울증 관련 게시물을 분석하여 그 안에서 주로 논의되는 주제를 파악하고자 한다. 구체적으로, 접근 용이성, 개방성 및 익명성 등의 특징을 지니는 페이스북이라는 온라인 커뮤니티에서 사용자들이 다소 민감한 정신적 질환인 우울증에 관하여 어떤 내용을 논의하는지 살펴보고자 한다. 본 연구를 위해 페이스북 데이터 수집에서부터 주제어 추출에 이르기까지의 전반적인 과정을 포함하는 자연어 처리 기반의 데이터 분석 프레임워크를 구현하였다. 구현한 프레임워크를 이용하여, 본 연구는 우울증을 논의하는 페이스북 최대 사용자 그룹에서 최근 1년간 작성한 885개의 게시물을 수집하여 분석하였다. 주제어 추출의 완성도와 정확도를 위해 자동화된 기법과 수동적인 접근법(불용어 제거, 주제어 개수 지정)을 결합하였으며, 이를 통해 주제를 다각도에서 분석하였다. 분석 결과, 사용자들은 우울증 일반, 인간관계, 기분 및 느낌, 우울증 증상, 자살, 의료 참고, 그리고 가족 등에 대한 논의를 주로 하는 것으로 파악되었다.
The study aims to analyze the posts of depression-related Facebook groups to understand major topics discussed by group users. Specifically, the purpose of the study is to identify the topics and keywords of the posts to understand what users discuss about depression. Depression is a mental disorder that is somewhat sensitive in the online community, which is characterized by accessibility, openness and anonymity. The researchers have implemented a natural language-based data analysis framework that includes components ranging from Facebook data collection to the automated extraction of topics. Using the framework, we collected and analyzed 885 posts created in the past one year from the largest Facebook depression group. To derive more complete and accurate topics, we combined both automated and manual (e.g., stop words removal, topic size determination) methods. Results indicate that users discuss a variety of topics including depression in general, human relations, mood and feeling, depression symptoms, suicide, medical references, family and etc.
고광운 외. 2016. Social Attributes 를 이용한 트위터 사용자의 감정 상태 예측. 『EXTENDED ABSTRACTS OF HCI KOREA 2016 학술대회 발표 초록집』, 2016년 1월 27일, 정선: 하이원리조트: 639-641.
김수정. 2012. 소셜 미디어 환경에서 대학생들의 건강정보 요구와 추구행태에 관한 탐험적 연구. 『한국비블리아학회지』, 23(4): 239-260.
매일경제. 2019. `우울증’ 60대 가장, 환각상태서 아내와 딸 흉기로 잔혹 살해. [online] [cited 2019. 7. 23.] <https://www.mk.co.kr/news/economy/view/2019/07/505355/>
목양숙. 2015. 페이스북 콘텐츠 감성이 사용자의 감정 변화 반응에 미치는 영향. 『정보디자인학연구』, 24: 91-99.
박은정, 조성준. 2014. KoNLPy: 쉽고 간결한 한국어 정보처리 파이썬 패키지. 『제26회 한글 및한국어 정보처리 학술대회 논문집』, 2014년 10월 10일, 춘천: 강원대학교 춘천캠퍼스: 133-136.
이재범 외. 2012. 블로그-트위터 매체 간 특성 차이 및 사용자 제품정보 처리와 평가차이 비교에관한 연구. 『정보시스템연구』, 21(1): 69-91.
차지영, 차미영. 2012. 트위터에서 우울의 담론. 『2012년 한국간호과학회 추계학술대회 논문집』, 2012년 10월 26일, 서울: 한국과학기술회관: 276-276.
황유선. 2016. 페이스북 일상담화의 감정 탐색. 『한국콘텐츠학회논문지』, 16(1): 1-13.
Aldarwish, M. M. and Ahmad, H. F. 2017. “Predicting Depression Levels Using Social Media Posts.” In 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS), 22-24 March, 2017: Bangkok: 277-280.
Bae, B. J. and Yi, Y. Y. 2017. “What Answers Do Questioners Want on Social Q&A? User Preferences of Answers about STDs.” Internet Research, 27(5): 1104-1121.
Bae, B. J. and Yi, Y. Y. 2019. “Identification and Comparison of the Persuasive Elements Present in “Best Answers" to STD-Related Questions on Social Q&A Sites: Yahoo! Answers (United States) Versus Knowledge-iN (South Korea).” International Journal of Communication, 13: 2516-2534.
Baker, D. A. and Algorta, G. P. 2016. “The Relationship Between Online Social Networking and Depression: A Systematic Review of Quantitative Studies.” CyberPsychology, Behavior & Social Networking, 19(11): 638-648.
Bar, K. J. et al. 2004. “The Influence of Major Depression and Its Treatment on Heart Rate Variability and Pupillary Light Reflex Parameters.” Journal of Affective Disorders, 82(2):245-252.
Bazarova, N. N. et al. 2017. “Psychological Distress and Emotional Expression on Facebook.”CyberPsychology, Behavior & Social Networking, 20(3): 157-163.
Boden, J. M. and Fergusson, D. M. “Alcohol and Depression.” Addiction, 106(5): 906-914.
Blei, D. M., Ng, A. Y. and Jordan, M. 2003. “Latent Dirichlet Allocation." Journal of Machine Learning Research, 3(4/5): 993-1022.
Cavazos-Rehg, P. A. et al. 2016. “A Content Analysis of Depression-related Tweets.”Computers in human behavior, 54, 351-357.
Choudhury, M., Counts, S. and Horvitz, E. 2013. “Social Media as a Measurement Tool of Depression in Populations.” In Proceedings of the 5th Annual ACM Web Science Conference, 2-4 May, 2013, Paris: 47-56.
Chow, T. S. and Wan, H. Y. 2017. “Is there any ‘Facebook Depression'? Exploring the moderating roles of neuroticism, Facebook social comparison and envy.” Personality and Individual Differences, 119: 277-282.
Chua, A. Y. and Banerjee, S. 2015. “Measuring the Effectiveness of Answers in Yahoo!Answers.” Online Information Review, 39(1): 104-118.
Fong, P. et al. 2014. “Quality of Online Information About Sexually Transmitted Diseases:Which Websites Should Patients Read?” Online Information Review, 38(5): 650-660.
Guntuku, S. C. et al. 2017. “Detecting Depression and Mental Illness on Social Media: An Integrative Review.” Current Opinion in Behavioral Sciences, 18, 43-49.
Ha, J. H., Aikat, D. D. and Jung, E. H. 2015. “Theories and Messages in South Korean Antismoking Advertising.” Health Communication, 30(10): 1022-1031.
Irwin, M. et al. 2003. “Nocturnal Catecholamines and Immune Function in Insomniacs, Depressed Patients, and Control Subjects.” Brain Behavior and Immunity, 17(5): 365-372.
Jin, J. et al. 2016. “How Users Adopt Healthcare Information: An Empirical Study of an Online Q&A Community.” International Journal of Medical Informatics, 86: 91-103.
Katchapakirin K. et al. 2018. “Facebook Social Media for Depression Detection in the Thai community.” In Proceedings of 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), 11-13 July, 2018, Nakhonpathom.
Katon, W. J. et al. 2005. “The Association of Comorbid Depression with Mortality in Patients with Type 2 Diabetes.” Diabetes Care, 28(11): 2668-2672.
Kneidinger, B. 2010. Facebook und Co. Eine soziologische Analyse von Interaktionsformen in Online Social Networks. Wiesbaden, Germany: Springer. Quoted in Scherr, S. and Brunet, A. 2017. “Differential Influences of Depression and Personality Traits on the Use of Facebook.”Social Media and Society, 3(1): 1-14.
Knol, M. J. et al. 2006. “Depression as a Risk Factor for the Onset of Type 2 Diabetes Mellitus. A Meta-analysis.” Diabetologia, 49(5): 837-845.
Lachmar, E. M. et al. 2017. “# MyDepressionLooksLike: Examining Public Discourse About Depression on Twitter.” JMIR Mental Health, 4(4): 1-11.
Lichtman, J. H. et al. 2008. “Depression and Coronary Heart Disease: Recommendations for Screening, Referral, and Treatment.” Circulation, 118(17): 1768-1775.
Meng, L. et al. 2012. “Depression Increases the Risk of Hypertension Incidence: A Metaanalysis of Prospective Cohort Studies.” Journal of Hypertension, 30(5): 842-851.
Moreno, M. et al. 2011. “Feeling Bad on Facebook: Depression Disclosures by College Students on a Social Networking Site.” Depression & Anxiety, 28(6): 447-455.
Nadeem, M. 2016. Identifying Depression on Twitter. [online] [cited 2019. 7. 7.]<https://arxiv.org/abs/1607.07384>
Reavley, N. J. and Pilkington, P. D. 2014. “Use of Twitter to Monitor Attitudes Toward Depression and Schizophrenia: An Exploratory Study.” PeerJ, 2: 1-15.
Řehůřek, R. and Sojka, P. 2010. “Software Framework for Topic Modelling with Large Corpora." In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, May 22, 2010. Valletta: Mediterranean Conference Centre: 46-50.
Resnik, P. et al. 2015. “Beyond LDA: Exploring Supervised Topic Modeling for Depressionrelated Language in Twitter.” In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology, June 5, 2015, Denver: 99-107.
Scherr, S. and Brunet, A. 2017. “Differential Influences of Depression and Personality Traits on the Use of Facebook.” Social Media and Society, 3(1): 1-14.
Scherr, S., Toma, C. L. and Schuster, B. 2018. “Depression as a Predictor of Facebook Surveillance and Envy: Longitudinal Evidence from a Cross-lagged Panel Study in Germany.”Journal of Media Psychology: Theories, Methods, and Applications, [online] [cited 2019. 7. 5.] <https://psycnet.apa.org/record/2018-50882-001>
Shar, C., Kitzie, V. and Choi, E. 2014. “Modalities, Motivations, and Materials - Investigating Traditional and Social Online Q&A Services.” Journal of Information Science, 40(5): 669-687.
Song, H. et al. 2016. “Trusting Social Media as a Source of Health Information: Online Surveys Comparing the United States, Korea, and Hong Kong.” Journal of Medical Internet Research, 18(3): e25.
Yi, Y. Y. 2018. “Sexual Health Information-seeking Behavior on a Social Media Site: Predictors of Best Answer Selection.” Online Information Review, 42(6): 880-897.
Yoon, S. et al. 2019. “Is Social Network Site Usage Related to Depression? A Meta-analysis of Facebook-depression Relations.” Journal of Affective Disorders, 248(1): 65-72.
Zhang, Y. 2013. “Toward a Layered Model of Context for Health Information Searching:An Analysis of Consumer-generated Questions.” Journal of the American Society for Information Science and Technology, 64(6): 1158-1172.
Zhao, Y. and Zhang, J. 2017. “Consumer Health Information Seeking in Social Media: A Literature Review.” Health Information & Libraries Journal, 34(4): 268-283.
Zhu, Y. et al. 2018. “Understanding the Research Landscape of Major Depressive Disorder via Literature Mining: An Entity-level Analysis of PubMed Data from 1948-2017.” JAMIA Open, 1(1), 115-121.