ISSN : 1225-598X
Hate is a collective expression of exclusivity toward others and it is fostered and reproduced through false public perception. This study aims to explore the objects and issues of hate discussed in our society using text mining techniques. To this end, we collected 17,867 news data published from 1990 to 2020 and constructed a co-word network and cluster analysis. In order to derive an explicit co-word network highly related to hate, we carried out sentence split and extracted a total of 52,520 sentences containing the words ‘hate’, ‘prejudice’ and ‘discrimination’ in the preprocessing phase. As a result of analyzing the frequency of words in the collected news data, the subjects that appeared most frequently in relation to hate in our society were women, race, and sexual minorities, and the related issues were related laws and crimes. As a result of cluster analysis based on the co-word network, we found a total of six hate-related clusters. The largest cluster was ‘genderphobic’, accounting for 41.4% of the total, followed by ‘sexual minority hatred’ at 28.7%, ‘racial hatred’ at 15.1%, ‘selective hatred’ at 8.5%, ‘political hatred’ accounted for 5.7% and ‘environmental hatred’ accounted for 0.3%. In the discussion, we comprehensively extracted all specific hate target names from the collected news data, which were not specifically revealed as a result of the cluster analysis.