ISSN : 1225-598X
본 연구에서는 연구자의 데이터 기반 R&D를 효율적으로 지원하기 위해 새로운 학술정보유형과 데이터셋을 발굴하고, 학술정보서비스의 방향을 제시하기 위한 선행 연구로서 연구자가 필요한 학술정보와 데이터 요구사항을 분석하였다. 이를 위해 관련 연구자 5인의 탐색적 사례 연구와 ScienceON 이용자의 온라인 설문을 통해 데이터 기반 R&D 행태 및 정보․데이터 요구사항을 도출하였다. 그 결과 데이터 기반 연구를 수행하는 연구자들은 학술논문을 많이 활용하며 데이터셋이나 소프트웨어 정보 또한 학술논문이나 학술회의자료로부터 참조하는 것으로 나타났다. 또한 주제 분야별로 활용하는 데이터 확보 방법, 획득 경로와 활용 데이터 유형이 차이가 있으며, 연구자들은 필요한 데이터셋이나 학습모델과 같은 소프트웨어가 어디에 있고 어떻게 확보해야할지 모르는 경우가 많아 연구를 수행하는데 애로사항이 많은 것으로 나타났다. 향후 데이터 기반 R&D를 지원하기 위해 주제별로 데이터셋을 체계적으로 구축해야할 필요가 있으며, 학술논문과 연계하여 데이터셋과 관련 소프트웨어 정보를 별도로 추출․요약해서 제공하는 방안을 고려해야 할 것으로 분석하였다.
In this study, as a preliminary research to effectively support data-driven R&D of researchers, we analyzed the academic information and data requirements for researchers to discover new types of academic information and datasets, and to propose directions for academic information services. To achieve the research objectives, we conducted an exploratory case study involving five researchers and administered an online survey among ScienceON users to glean insights into data-driven R&D behaviors and information/data requirements. As a result, researchers relatively referred to academic papers, datasets and software information from academic papers or conference materials. Moreover, the methods and pathways for acquiring data, as well as the types of data, varied across different subject areas. Researchers often faced challenges in data-driven R&D due to difficulties in locating and accessing necessary datasets or software such as learning models. Therefore it has been analyzed that for future support of data-driven R&D, there is a need to systematically construct datasets by subject. Additionally, it is considered necessary to extract and summarize dataset and related software information in conjunction with academic papers.