바로가기메뉴

본문 바로가기 주메뉴 바로가기

Examining the Intellectual Structure of Housing Studies in Korea with Text Mining and Factor Analysis

Journal of the Korean Society for Library and Information Science / Journal of the Korean Society for Library and Information Science, (P)1225-598X; (E)2982-6292
2010, v.44 no.2, pp.285-308
https://doi.org/10.4275/KSLIS.2010.44.2.285



Abstract

This study analyzes the intellectual structure in domestic research of the Housing field, by utilizing text mining technique. Unlike the existing research that mainly uses text clustering in statistical analyses to identify subject specialties, core authors, and relationships between research areas, this study applied author profiling and factor analysis. To supplement the analysis of intellectual structure generated by text mining, and to perform evaluation on intellectual structure itself, two professionals in the housing field were interviewed. The intellectual structure, generated through text mining, was evaluated and showed its division of valid research areas that is slightly different from the traditional intellectual structure in the housing field.

keywords
Text Mining, Author Profiling, Factor Analysis, Knowledge Domain Analysis, Housing Studies, 저자 프로파일링, 요인분석, 텍스트 마이닝, 지적 구조 분석, 주거학

Reference

1.

김숙희, 문수재, 이성우, 최혜미, 김성련, 이순원. 1982. 가정학 계열학과의 모형 교육과정 개발연구. ꡔ대한가정학회지ꡕ, 20(2): 1-35.

2.

김판준, 이재윤. 2007. 연구영역분석을 위한 디스크립터 프로파일링에 관한 연구. ꡔ정보관리학회지ꡕ, 24(4): 285-303.

3.

문주영. 2009. 텍스트마이닝을 이용한 비서학의 지적구조 이해. ꡔ비서학논총ꡕ, 18(1): 83-98.

4.

안옥희, 윤재웅, 배정인. 2001. ꡔ주거학의 이해ꡕ. 서울: 기문당.

5.

대한가정학회, 편. 1990. ꡔ가정관리학, 소비자학, 주거학ꡕ. 가정학연구의 최신정보, 3. 서울: 대한가정학회. 176-214.

6.

이영준. 2002. ꡔ요인분석의 이해ꡕ. 서울: 도서출판 석정.

7.

이재윤. 2003. 피벗 역문헌빈도 가중치 기법에 대한 연구. ꡔ정보관리학회지ꡕ, 20(4): 233-248.

8.

이재윤. 2007a. 지적 구조 분석을 위한 MDS 지도 작성 방식의 비교 분석. ꡔ한국문헌정보학회지ꡕ, 41(2): 335-357.

9.

이재윤. 2007b. 국내 광역 과학 지도 생성 연구. ꡔ정보관리학회지ꡕ, 24(3): 363-383.

10.

이재윤, 문주영, 김희정. 2007. 텍스트 마이닝을 이용한 국내 기록관리학 분야 지적구조 분석. ꡔ한국문헌정보학회지ꡕ, 41(1); 345-372.

11.

조재순. 2007. 주거학 분야 연구 동향. ꡔ한국가정관리학회지ꡕ, 87: 73-81.

12.

주영애, 이길표. 1987. 최근 10년간의 주거학 연구동향: 1976년~1986년까지 발표된 논문을 중심으로. ꡔ생활문화연구ꡕ, 1: 81-100.

13.

황덕순, 한경미, 홍은실. 1995. 가정학의 학문적 정체성 확립을 위한 대한가정학회지 논문 내용분석: 1959년부터 1994년까지. ꡔ대한가정학회지ꡕ, 33(3): 17-30.

14.

Ananiadou, Sophia, & Mcnaught, John, eds. 2006. Text Mining for Biology And Biomedicine. Norwood, MA: Artech House Publishers.

15.

Berry, Michael W., & Castellanos, Malu. 2008. Survey of Text Mining Ⅱ: Clustering, Classification, and Retrieval. New York: Springer.

16.

Callon, M., J. Law, & Rip, A. ed. 1986. Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World. London: Mac Millan.

17.

Cattell, R. B. 1966. “The scree test for the number of factors." Multivariate Behavioral Research, 1(2): 245-276.

18.

Delen, Dursun, & Crosslan, Martin D. 2008. “Seeding the survey and analysis of research literature with text mining." Expert Systems with Applications, 34(3): 1707-1720.

19.

Fattori, M., Pedrazzi, G., & Turra, R. 2003. “Text mining applied to patent mapping: a practical business case." World Patent Information, 25(4): 335-342.

20.

Feldman, Ronen, & Sanger, James. 2007. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. New York: Cambridge University Press.

21.

Glenisson, P., Gla"nzel, W., & Persson, O. 2005. “Combining full-text analysis and bibliometric indicators." Scientometrics, 63(1): 163-180.

22.

Kaiser, H. F. 1960. “The application of electronic computers to factor analysis." Educational and Psychological Measurement, 20(1): 141-151.

23.

Kessler, M. M. 1963. “Bibliographic coupling between scientific papers." American Documentation, 14(1): 10-25.

24.

Kim, Heejung, & Lee, Jae Yun. 2008. “Exploring the emerging intellectual structure of archival studies using text mining: 2001-2004." Journal of Information Science, 34(3): 356-369.

25.

Kim, Heejung, & Lee, Jae Yun. 2009. “Archiving research trends in LIS domain using profiling analysis." Scientometrics, 80(1): 75-90.

26.

Kostoff, R. N., Tshiteya, R., Pfeil, K. M., Humenik, J. A., & Karypis, G. 2005. “Power source roadmaps using bibliometrics and database tomography." Energy, 30(5): 709-730.

27.

Kostoff, R. N., Eberhart, H. J., & Toothman, D. R. 1998. “Database tomography for technical intelligence: A roadmap of the near-earth space science and technology literature." Information Processing & Management, 34(1): 69-85.

28.

Kostoff, Ronald N, del Rio, J. Antonio, Humenik, James A., & Ramirez, Anna Maria. 2001. “Citation mining: Integrating text mining and bibliometrics for research user profiling." Journal of the American Society for Information Science and Technology, 52(13): 1148-1156.

29.

Kostoff, Ronald N., & Block, Joel A. 2005. “Factor matrix text filtering and clustering." Journal of the American Society for Information Science and Technology, 56(9): 946-968.

30.

Lee, Jae Yun, Kim, Heejung, & Kim, Pan Jun. 2010. “Domain analysis with text mining: Analysis of digital library research trends using profiling methods." Journal of Information Science, 36(2): 144-161.

31.

Miller, Thomas W. 2004. Data And Text Mining: A Business Application Approach. Upper Saddle River, NJ: Prentice-Hall, Inc.

32.

Small, H. G. 1973. “Co-citation in the scientific literature: a new measure of the relationship between two documents." Journal of the American Society for Information Science, 24(4): 265-269.

33.

Tseng, Yuen-Hsien, Lin, Chi-Jen, & Lin, Yu-I. 2007. “Text mining techniques for patent analysis." Information Processing & Management, 43(5): 1216-1247.

34.

White, H. D., & Griffith, B. C. 1981. “Author co-citation: a literature measure of intellectual structure." Journal of the American Society for Information Science, 32(3): 163-171.

35.

Witten, I. H. 2004. “Adaptive text mining: Inferring structure from sequences." Journal of Discrete Algorithms, 2(2): 137-159.

36.

Yoon, Byungun, & Park, Yongtae. 2004 “A text-mining-based patent network: Analytical tool for high-technology trend." Journal of High Technology Management Research, 15: 37-50.

Journal of the Korean Society for Library and Information Science