바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1225-598X
  • E-ISSN2982-6292

이미지 인지 유형 및 검색질의 방식에 따른 검색 효율성에 관한 연구

A Study on the Retrieval Effectiveness Based on Image Query Types

한국문헌정보학회지 / Journal of the Korean Society for Library and Information Science, (P)1225-598X; (E)2982-6292
2013, v.47 no.3, pp.321-342
https://doi.org/10.4275/KSLIS.2013.47.3.321
김성희 (중앙대학교)
이근영 (중앙대학교)

초록

본 연구에서는 이미지 인지유형 및 질의방식에 따른 검색방법의 효율성을 분석하기 위해 32명의 대학생들이 구글 이미지 검색시스템을 이용하여 검색실험을 실시하였다. 이미지 인지유형은 구체적(specific), 일반적(generic), 추상적(abstract) 유형으로 구분하였으며, 각 유형별 이미지를 텍스트검색, 예제에 따른 검색(QBE: Query by example), 하이브리드검색 등 3가지 질의방식으로 구분하여 실험을 실시하였다. 독립변수는 이미지 인지유형 및 질의방식이며 종속변수는 검색된 적합한 이미지의 수이다. 데이터 분석은 일원배치 분산분석(One-way ANOVA)과 이원배치분석(Two way ANOVA)을 이용하여 검증하였다. 분석결과로는 구체적 이미지와 일반적 이미지 인지유형에서는 텍스트 및 하이브리드 방식이 검색효율성이 높게 나타났고 추상적 이미지 인지유형에서는 QBE이 검색효율성이 높은 것으로 나타났다. 본 연구 결과는 이미지 검색에서 검색효율성을 높이기 위한 방안을 마련하는데 기초 자료로 활용될 수 있을 것이다.

keywords
이미지 인지유형, 이미지 검색, 텍스트 기반 검색, 내용 기반 검색, 하이브리드 검색, 검색효율성, Image Search, Image Types, Text-search, Content-based Search, Hybrid/Hybrid Search, Retrieval Effectiveness, Image Search, Image Types, Text-search, Content-based Search, Hybrid/Hybrid Search, Retrieval Effectiveness

Abstract

The purpose of this study was to compare and evaluate retrieval effectiveness of three types of image perception using different retrieval methods. Image types included specific, general, and abstract topics. The retrieval method included text only search, query by example (QBE) search, and a hybrid/ hybrid search. Thirty-two college students were recruited for searching topics using Google image search system. The search results were compared with One-Way and Two-Way ANOVA. As a result, text search and hybrid search showed advantage when searching for specific and general topics. On the other hand, the QBE search performed better than both the text-only and hybrid search for abstract topics. The results have implications for the implementation of image retrieval systems.

keywords
이미지 인지유형, 이미지 검색, 텍스트 기반 검색, 내용 기반 검색, 하이브리드 검색, 검색효율성, Image Search, Image Types, Text-search, Content-based Search, Hybrid/Hybrid Search, Retrieval Effectiveness, Image Search, Image Types, Text-search, Content-based Search, Hybrid/Hybrid Search, Retrieval Effectiveness

참고문헌

1.

김수경, 안기홍. 2005. 시맨틱 주석과 도메인 온톨로지를 이용한 내용기반 이미지 검색. ..한국지능정보시스템학회 2005년 추계학술대회논문집.., 11: 331-337.

2.

김성희. 2004. 내용기반 이미지 및 비디오 검색 시스템 성능분석에 관한 연구. ..한국비블리아학회지.., 15(2): 97-115.

3.

김양우. 2008. 이미지 검색을 위한 영역별 기술어에 관한 연구. ..한국문헌정보학회지.., 42(1): 253-272.

4.

모영일, 이철. 2009. 내용기반 이미지 검색에 있어 이미지 속성정보를 활용한 검색 효율성 향상. ..한국시뮬레이션학회논문지.., 18(2): 39-48.

5.

박소연. 2010. 주요 포털들의 멀티미디어 검색 서비스 비교 분석. ..한국문헌정보학회지.., 44(4): 395-410.

6.

박우창. 2011. 텍스타일 이미지 검색 및 질감 클러스터링. ..한국정보기술학회논문지.., 9(3): 189-197.

7.

박창섭. 2007. 의미적 연관성을 이용한 멀티미디어 정보 검색. ..한국인터넷정보학회지.., 8(5): 67-79.

8.

유소영, 문성빈. 2004. 심미적 인상을 이용한 이미지 검색에 관한 실험적 연구. ..정보관리학회지.., 21(4): 187-208.

9.

유승훈, 김덕환, 이석룡, 정진완, 김상희. 2008. 윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT기반 이미지 유사성 검색. ..정보과학회논문지: 데이터베이스.., 35(4): 345-355.

10.

정은경, 윤정원. 2010. 이미지 검색 과정에 나타난 질의전환 및 재구성 패턴에 관한 연구. ..정보관리학회지.., 27(2): 37-60.

11.

Armitage, L., & Enser, P. 1997. “Analysis of user need in image archives.” Journal of Information Science, 23(4): 287-289.

12.

Bassil, Y. 2012. “Hybrid Information Retrieval Model for Web Images.” International Journal of Computer Science & Emerging Technologies, 3(1).

13.

Berinstein, P. 1999. “Do you see what I see?: image indexing principles for the rest of us.” Online, 23(2): 85-86.

14.

Choi1, Y., & Rasmussen, E. M. 2003. “Searching for images: The analysis of users' queries for image retrieval in American history." Journal of the American Society for Information Science and Technology, 54(6): 471-592.

15.

Chen, H., & Rasmussen, E. 1999. “Intellectual access to images.” Library Trends, 48(2): 291-302.

16.

Chen, L., Xu, D., Tsang, I. W., & Luo, J. 2012. “Tag-based Image Retrieval Improved by Augmented Features and Group-based Refinement." IEEE Trans. on Multimedia (T-MM), 14(4): 1057-1067.

17.

Chung, E., & Yoon, J. 2009. “Categorical and specificity differences between user-supplied tags and search query terms for images. An analysis of Flickr tags and Web image search queries.” Information Research, 14(3).

18.

Djordjevic, D., & Izquierdo, E. 2007. “An Object- and User-Driven System for Semantic-Based Image Annotation and Retrieval." IEEE Transactions on Circuits and Systems for Video Technology, 7(3): 313-323.

19.

Enser, P. 2000. “Visual image retrieval: Seeking the alliance of concept-based and contentbased paradigms.” Journal of Information Science, 26(4): 199-210.

20.

Gao, D. H. Wang, & Lee, C. H. 2006. “Automatic Image Annotation through Multi-TopicText Categorization." In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 377-380.

21.

Golbeck, J., Koepfler, J., & Emmerling, B. 2011. “An Experimental Study of Social Tagging Behavior and Image Content.” Journal of the American Society for Information Science and Technology, 62(9): 1750-1760.

22.

Hare, J., Lewis, P., Enser, P., & Sandom, C. 2007. “Semantic facets: an in-depth analysis of a semantic image retrieval system.” ACM international conference on Image and Video retrieval, 250-257.

23.

Hollink, L., Schreiber, A., Wielinga, B., & Worring, M. 2004. “Classification of user image descriptions.” International Journal of Human-Computer Studies, 61(5): 601-626.

24.

Huang, T. S., Chang, E. Y., Rajaram, S., Dagli, C. K., Mandel, M. I., Poliner, G. E., & Ellis, D. P. W. 2008. “Active Learning for Interactive Multimedia Retrieval.” IEEE, 96(4): 648-667.

25.

Jaimes, A., & Chang, S. 2000. “A conceptual Framework for Indexing Visual Information at Mutiple levels.” IS&T/SPIE Conference Proceedings. Internet Imaging, Vol.3964: 1-14.

26.

Jansen, B. J. 2008. “Searching for digital images on the Web." Journal of Documentation, 64(1): 81-101.

27.

Kim, W., Song, J., Kim, S., & Park, S. 2008. “Image retrieval model based on weighted visual features determined by relevance feedback.” Information Sciences, 178: 4301-4313.

28.

Lu, Y., Zhang, L., Liu, J., & Tian, Q. 2010. “Constructing concept lexica with small semantic gaps.” IEEE Trans. Multimedia, 12(4): 288-299.

29.

Panofsky, E. 1955. “Meaning in the visual arts papers in and the history.” Doubleday & Company. Inc.: 364-392.

30.

Shatford, S. 1986. “Analyzing the subject of a picture: A Theoretical approach.” Cataloging & Classification Quarterly, 5(3): 39-61.

31.

Shaford, S. 1994. “Some issues in the indexing of images.” Journal of the American Society for Information Science, 45(8): 584-585.

32.

Lee, H.J., & Neal, D. 2010. “A new model for semantic photograph description combining basic levels and user-assigned descriptors.” Journal of Information Science, 36(5): 547-565.

33.

Ogle, V.E., & Stonebraker, M. 1995. “Chabot: Retrieval from relational database of images.” IEEE computer, 28(9): 42-43.

34.

Yang, C. 2004. “Content-based image retrieval: a comparison between query by example and image browsing map approaches.” Journal of Information Science, 30(3): 254-267.

35.

Yang, M., Wildemuth, B. M., & Marchionini, G. 2004. “The relative effectiiveness of conceptbased versus content-based video retrieval.” ACM Multimedia System Journal, 8(6): 536-544.

36.

Zhou, X., & Huang, T. 2003. “Relevance feedback in image retrieval: a comprehensive review.” in Multimedia Systems, 8(6): 536-544.

37.

Google Image. <http://images.google.com>.

한국문헌정보학회지