적합성 평가는 검색효율을 향상시키는데 있어서 중요한 요소이다. 또한 이미지의 검색과 이용이 인터넷과 디지털 정보기술의 발달로 인해 보편화되었음에도 불구하고 이미지 적합성 평가에 관한 연구는 미미한 상황이다. 본 연구는 이미지 검색 실패 사례에 나타난 비적합성 평가요소를 규명하고 특성을 살펴보고자 하였다. 이를 위해서 총 135명의 대학생이 연구에 참여하였으며, 1,452건의 평가요소가 분석의 대상이 되었다. 기존의 연구에서 밝힌 평가요소를 포함하여 본 연구는 13종의 평가요소를 규명하였으며, 전체적으로 ‘주제적합성’, ‘구성’, ‘정확성’, ‘시각적특성’, ‘완전성’, ‘심미적요소’, ‘구도’, ‘서지적요소’, ‘인상’, ‘자세’, ‘얼굴특성’, ‘새로움’, ‘시대배경’ 순의 비중으로 나타났다. 이중에서 ‘구성’과 ‘구도’는 본 연구에서 특징적으로 새롭게 규명한 평가요소이며, 기존의 연구에서 밝힌 ‘행동’ 평가요소는 본 연구 데이터에서는 찾아볼 수 없었다. 또한 이러한 평가요소의 비중은 이용자가 지닌 이미지요구와 이용목적의 특성에 따라서 차이를 보였다.
Relevance judgment is important in terms of improving the effectiveness of information retrieval systems, and it has been dominant for users to search and use images utilizing internet and digital technologies. However, in the field of image retrieval, there have been only a few studies in terms of identifying relevance criteria. The purpose of this study aims to identify and characterize the non-relevance criteria from the failed image searches. In order to achieve the purpose of this study, a total of 135 participants were recruited and a total of 1,452 criteria items were collected for this study. Analyses and identification on the data set found thirteen criteria such as ‘topicality’, ‘visual content’, ‘accuracy’, ‘visual feature’, ‘completeness’, ‘appeal to user’, ‘focal point’, ‘bibliographic information’, ‘impression’, ‘posture’, ‘face feature’, ‘novelty’, and ‘time frame’. Among these criteria, ‘visual content’ and ‘focal point’ were introduced in this current study, while ‘action’ criterion identified in previous studies was not shown in this current study. When image needs and image uses are analyzed with these criteria, there are distinctive differences depending on different image needs and uses.
박정아. 2012. 통합 검색 환경에서 이용자 적합성 판단 기준에 관한 탐색적 연구. 정보관리학회지, 29(2), 113-133.
배경재. 2014. 대학생의 과제해결과정 중 정보적합성 판단에 관한 연구. 정보관리학회지, 31(1):189-206.
정은경. 2015. 이미지 검색 실패에 나타난 이미지 요구와 맥락에 관한 분석. 한국비블리아학회지, 26(1), 199-215.
Albertson, D. 2015. Visual Information Seeking. Journal of the American Society for Information Science, 66(6), 1091-1105.
Barry, C. L. 1994. User-Defined Relevance Criteria: An Exploratory Study. Journal of the American Society for Information Science, 45(3), 149-159.
Barry, C. L., and Schamber, L. 1998. Users’ Criteria for Relevance Evaluation: A Cross-Situational Comparison. Information Processing and Management, 34(2-3), 219-236.
Bateman, J. 1999. Modeling the Importance of End-User Relevance Criteria. In Proceedings of the 62nd Annual Meeting of the American Society for Information Science, October 31-November 4, 1999, Washington, D.C.: 396-406.
Batley, S. 1988. Visual Information Retrieval: Browsing Strategies in Pictorial Database.In Proceedings of 12th International Online Information meeting, December 6-8, 1988, London:373-381.
Choi, Y., and Rasmussen, E. M. 2002. User's Relevance Criteria in Image Retrieval in American History. Information Processing and Management: an International Journal, 38(5), 695-726.
Choi, Y., and Rasmussen, E. M. 2003. Searching for Images: The Analysis of Users' Queries for Image Retrieval in American History. Journal of the American Society for Information Science and Technology, 54(6), 498-511.
Chung, E. K., and Yoon, J. W. 2011. Image Needs in the Context of Image Use: An Exploratory Study. Journal of Information Science, 37(2), 163-177.
Sedghi, S., Sanderson, M., and Clough, P. 2008. A Study on the Relevance Criteria for Medical Images. Pattern Recognition Letters, 29(15), 2046-2057. [online]<http://dx.doi.org/10.1016/j.patrec.2008.07.003>
Conniss, L. R., Ashford, A. J., and Graham, M. E. 2000. Information Seeking Behavior in Image Retrieval: VISOR I Final Report. Library and Information Commission Research Report, 95. Newcastle upon Tyne: Institute for Image Data Research, University of Northumbria at Newcastle.
Cunningham, S. J., and M. Masoodian. 2006. Looking for a Picture: An Analysis of Everyday Image Information Searching. In Proceedings of the 6th ACM/IEEE-CS Joint Conference, June 11-15, 2006, Chapel Hill, NC: 198-199.
Hölscher, C., and Strube, G. 2000. Web Search Behavior of Internet Experts and Newbies.Computer networks, 33(1), 337-346.
Hung, T. Y., Zoeller, C., and Lyon, S. 2005. Relevance Judgments for Image Retrieval in the Field of Journalism: A Pilot Study. Lecture Notes in Computer Science, 3815, 72-80.
Jansen, B. J., Spink, A., and Saracevic, T. 2000. Real Life, Real Users, and Real Needs:A Study and Analysis of User Queries on the Web. Information Processing & Management, 36(2), 207-227.
Markkula, M., and Sormunen, E. 2000. End-User Searching Challenges Indexing Practices in the Digital Newspaper Photo Archive. Journal Information Retrieval, 1(4), 259-285.
Mizzaro, S. 1997. Relevance: The Whole History. Journal of the American Society for Information Science, 48(9), 810-832.
Pu, H. 2008. An Analysis of Failed Queries for Web Image Retrieval. Journal of Information Science, 34(3), 275-289.
Saracevic, T. 1996. Relevance Reconsidered. In Proceedings of the 2nd Conference on Conceptions of Library and Information Science, October 13-16, 1996, Copenhagen: Royal School of Librarianship: 201-218.
Schamber, L. 1994. Relevance and Information Behaviour. Annual Review of Information Science and Technology, 29, 3-48.
Silverstein, C. et al. 1999. Analysis of a Very Large Web Search Engine Query Log. ACM SIGIR Forum, 33(1), 6-12.
Xu, Y., and Chen, Z. 2006. Relevance Judgment: What Do Information Users Consider Beyond Topicality? Journal of the American Society for information Science and Technology, 57(7), 961-973.