본 연구는 스피치 요약의 알고리즘을 구성하기 위해서 방대한 스피치 본문의 복잡한 분석 없이 적용될 수 있는 이용자 태그 기법, 문장 위치 및 문장 중복도 제거 기법의 효율성을 분석해 보았다. 그런 다음, 이러한 분석 결과를 기초로 하여 스피치 요약 방법을 구성, 평가하여 효율적인 스피치 요약 방안을 제안하는 것을 연구 목적으로 하고 있다. 제안된 스피치 요약 방법은 태그 및 표제 키워드 정보를 활용하고 중복도를 최소화하면서 문장 위치에 대한 가중치를 적용할 수 있는 수정된 Maximum Marginal Relevance 모형을 사용하여 구성하였다. 제안된 요약 방법의 성능은 스피치 본문의 단어 빈도 및 단어 위치 정보를 적용하여 상대적으로 복잡한 어휘 처리를 한 Extractor 시스템의 성능과 비교되었다. 비교 결과, 제안된 요약 방법을 사용한 경우가 Extractor 시스템의 경우 보다 평균 정확률은 통계적으로 유의미한 차이를 보이며 더 높았고, 평균 재현율은 더 높았지만 통계적으로 유의미한 차이를 보이지는 못했다.
We investigated how useful video tags were in summarizing video speech and how valuable positional information was for speech summarization. Furthermore, we examined the similarity among sentences selected for a speech summary to reduce its redundancy. Based on such analysis results, we then designed and evaluated a method for automatically summarizing speech transcripts using a modified Maximum Marginal Relevance model. This model did not only reduce redundancy but it also enabled the use of social tags, title words, and sentence positional information. Finally, we compared the proposed method to the Extractor system in which key sentences of a video speech were chosen using the frequency and location information of speech content words. Results showed that the precision and recall rates of the proposed method were higher than those of the Extractor system, although there was no significant difference in the recall rates.
김현희. 2009. 비디오의 오디오 정보 요약 기법에 관한 연구. 『정보관리학회지』, 26(3): 169-188.
김현희. 2011. 비디오 의미 파악을 위한 멀티미디어 요약의 비동시적 오디오와 이미지 정보간의상호 작용 효과 연구. 『한국문헌정보학회지』, 45(2): 97-118.
정영미. 2007. 『정보검색연구』. 서울: 구미무역출판부.
이한성 외. 2010. 멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝. 『정보과학회논문지: 데이타베이스』, 37(3): 127-136.
Boydell, O., & Smyth, B. 2010. “Social summarization in collaborative web search.” Information Processing and Management, 46(6): 782-798.
Chen, B., & Lin, S. 2012. “A risk-aware modeling framework for speech summarization.” IEEE Transactions on Audio, Speech, and Language Processing, 20(1): 211-222.
Christensen, H., et al. 2003. “Are extractive text summarisation techniques portable to broadcast news?” In Proceedings of Automatic Speech Recognition and Understanding Workshop, 489-494. St. Thomas, USA.
Chung, M., Wang, T. & Sheu, P. 2011. “Video summarisation based on collaborative temporal tags.” Online Information Review, 35(4): 653-668.
Goldstein, J., et al. 2000. “Multi-document summarization by sentence extraction.” In Proceedings of the 2000 NAACL-ANLP Workshop on Automatic Summarization(NAACL-ANLP-AutoSum '00), Vol.4: 40-48. Stroudsburg, PA, USA: Association for Computational Linguistics.
Hannon, J., et al. 2011. “Personalized and automatic social summarization of events in video.” In Proceedings of the 16th International Conference on Intelligent User Interfaces, 335-338. Palo Alto, California, USA.
Heckner, M., Neubauer, T., & Wolff, C. 2008. “Tree, funny, to read, google: What are tags supposed to achieve?” In Proceedings of the 2008 ACM Workshop on Search in Social Media, 3-10. Napa Valley, California, USA.
Hirohata, M., et al. 2006. “Sentence-extractive automatic speech summarization and evaluation techniques.” Speech Communication, 48(9): 1151-1161.
Kim, H. 2011. “Toward video semantic search based on a structured folksonomy.” Journal of the American Society for Information Science, 62(3): 478-492.
Liu, Y., & Hakkani-Tur, D. 2011. “Speech summarization.” In Spoken Language Understanding: Systems for Extracting Semantic Information from Speech. G. Edited by Hakkani-Tur and R. Mori. Hoboken, NJ: Wiley, 357-392.
Maskey, S., & Hirschberg, J. 2006. “Summarizing speech without text using Hidden Markov Models.” In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers(NAACL-Short'06), 89-92. Stroudsburg, PA, USA: Association for Computational Linguistics.
Marchionini, G., et al. 2009. “Multimedia surrogates for video gisting: Toward combining spoken words and imagery.” Information Processing and Management, 45(6): 615-630.
Murray, G., Renals, S., & Carletta, J. 2005. “Extractive summarization of meeting recordings.” Proceedings of the 9th European Conference on Speech Communication and Technology (INTERSPEECH), 593-596. Lisbon, Portugal.
Song, Y., & Marchionini, G. 2007. “Effects of audio and visual surrogates for making sense of digital video.” In Proceedings of CHI 2007, 867-876. San Jose, CA, USA.
Turney, P. 2000. “Learning algorithms for keyphrase extraction.” Information Retrieval, 2(4): 303-336.
Xie, S., & Liu, Y. 2008. “Using corpus and knowledge-based similarity measure in maximum marginal relevance for meeting summarization.” IEEE International Conference on Acoustics, Speech and Signal Processing, 4985-4988.
Xie, S., et al. 2009. “Integrating prosodic features in extractive meeting summarization.” Proceedings of Automatic Speech Recognition & Understanding, 2009.
Zechner, K. 2002. “Automatic summarization of open-domain multiparty dialogues in diverse genres.” Computational Linguistics, 28(4): 447-485.
Zhang, J., et al. 2007. “A comparative study on speech summarization of broadcast news and lecture speech.” In INTERSPEECH-2007, 2781-2784.
Zhu, J., et al. 2009. “Tag-oriented document summarization." Proceedings of the 18th International Conference on World Wide Web, 1195-1196.
Zhu, X., Penn, G., & Rudzicz, F. 2009. “Summarizing multiple spoken documents: Finding evidence from untranscribed audio.” Proceedings of ACL/AFNLP, 549-557.