바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1225-598X
  • E-ISSN2982-6292

연구 데이터 관리를 위한 데이터 라이프 사이클 제안

Data Life Cycle Proposal for Research Data Management

한국문헌정보학회지 / Journal of the Korean Society for Library and Information Science, (P)1225-598X; (E)2982-6292
2019, v.53 no.4, pp.309-340
https://doi.org/10.4275/KSLIS.2019.53.4.309
김주섭 (전북대학교)
김선태 (전북대학교)
전예린 (전북대학교)

초록

해외에서는 1990년대부터 데이터의 보존과 큐레이션을 위하여 데이터 라이프 사이클을 개발하였지만, 국내에서는 연구가 상당히 미흡한 실정이다. 본 연구에서는 연구 데이터 관리를 위한 데이터 라이프 사이클을 제안하기 위하여 DCC, ICPSR, IWGDD, DataONE, USGS 그리고 UKDA에서 개발된 데이터 라이프 사이클을 분석하였다. 분석 결과 공통적으로 도출된 구성 요소는 ‘계획’, ‘생성 및 수집’, ‘프로세스’, ‘보존’, ‘이관 및 폐기’, ‘접근 및 이용’, ‘기술’, ‘보장’ 그리고 ‘백업 및 보안’ 등 9개이다. 또한 9개의 구성 요소를 단계별로 세분화하여 해당 단계에서 수행되어야 할 세부 내용을 기술하였다. 향후 국내에서 연구 데이터 관리를 위한 데이터 라이프 사이클을 개발할 때 본 연구의 내용을 적용할 수 있을 것으로 기대한다.

keywords
연구 데이터, 데이터 라이프 사이클, 보존, 큐레이션, 오픈 사이언스, Research Data, Data Life Cycle, Preservation, Curation, Open Science

Abstract

Although overseas countries have already developed data life cycle for the preservation and curation of data since the 1990s, the research in Korea has been very insufficient. In this study, we analyzed the data life cycles developed in DCC, ICPSR, IWGDD, DataONE, USGS and UKDA to propose data life cycle for efficient management of research data. As a result of the analysis, the common components derived are ‘Plan’, ‘Create & Collect’, ‘Process’, ‘Preserve’, ‘Dispose’, ‘Access & Use’, ‘Describe’, ‘Assure’ and ‘Backup & Secure’. In addition, the nine components were subdivided into stages to describe the details to be carried out at that stage. It is expected that the content of this study will be applicable in the future development of data life cycle for research data management in Korea.

keywords
연구 데이터, 데이터 라이프 사이클, 보존, 큐레이션, 오픈 사이언스, Research Data, Data Life Cycle, Preservation, Curation, Open Science

참고문헌

1.

김주섭, 김선태, 최상기. 2019. 연구 데이터 관리 및 서비스를 위한 핵심요소의 기능적 요건. 『한국문헌정보학회지』, 53(3): 317-344.

2.

C Jung et al. 2014. “Optimization of data life cycles.” Journal of Physics: Conference Series, 513: 1-8. [online] [cited 2019. 10. 9.] <doi:10.1088/1742-6596/513/3/032047>

3.

Data Lifecycle. [online] [cited 2019. 10. 13.]<https://nnlm.gov/data/thesaurus/data-lifecycle>

4.

DataONE Public Participation in Scientific Research Working Group. 2013. Data Management Guide for Public Participation in Scientific Research. [online] [cited 2019. 10. 15.]<https://www.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf>

5.

Faundeen, J. L. et al. 2013. The United States Geological Survey Science Data Lifecycle Model: U.S. Geological Survey Open-File Report 2013-1265, 4 p. <http://dx.doi.org/10.3133/ofr20131265>

6.

ICPSR. 2012. Guide to Social Science Data Preparation and Archiving. 5th edition. [online][cited 2019. 10. 14.] <https://www.icpsr.umich.edu/files/deposit/dataprep.pdf>

7.

Interagency Working Group on Digital Data. [online] [cited 2019. 10. 14.]<https://itlaw.wikia.org/wiki/Interagency_Working_Group_on_Digital_Data>

8.

Intro to data management. [online] [cited 2019. 10. 17.]<https://library.cmu.edu/datapub/dms/data/101>

9.

IWGDD. 2012. HARNESSING THE POWER OF DIGITAL DATA FOR SCIENCE AND SOCIETY. Report of the Interagency Working Group on Digital Data to the Committee on Science of the National Science and Technology Council January 2009. [online] [cited 2019. 10. 15.] <https://www.nitrd.gov/About/Harnessing_Power_Web.pdf>

10.

Kristi Miller et al. 2018. Data Management Life Cycle. Texas A&M Transportation Institute, PRC 17-84F, March 2018 [online] [cited 2019. 10. 12.]<https://static.tti.tamu.edu/tti.tamu.edu/documents/PRC-17-84-F.pdf>

11.

Louise Corti et al. 2014. Managing and Sharing Research Data: A Guide to Good Practice. [online] [cited 2019. 10. 13.]<http://www.sagepub.com/sites/default/files/upm-binaries/61019_Corti_Managing_and_sh aring_research_data.pdf>

12.

Maureen Pennock. 2007. Digital Curation: A Life-Cycle Approach to Managing and Preserving Usable Digital Information. Library & Archives, January 2007. [online] [cited 2019. 10. 8.]<http://www.ukoln.ac.uk/ukoln/staff/m.pennock/publications/docs/lib-arch_curation.pdf>

13.

Mohammed El Arass, Iman Tikito, Nissrine Souissi. 2017. Data lifecycles analysis: towards intelligent cycle. IEEE ISCV, Apr 2017, Fez, Morocco. ffhal-01593851f [online] [cited 2019. 10. 11.] <https://hal.archives-ouvertes.fr/hal-01593851/document>

14.

Open Science. [online] [cited 2019. 10. 12.] <https://en.wikipedia.org/wiki/Open_science>, <https://eua.eu/issues/21:open-science.html>

15.

Peter Kraker et al. 2011. The case for an open science in technology enhanced learning. Int. J. Technology Enhanced Learning, 3(6): 643-654.. [online] [cited 2019. 10. 8.]<http://www.know-center.tugraz.at/download_extern/papers/open_science.pdf>

16.

Research data lifecycle. [online] [cited 2019. 10. 14.]<https://blogs.ntu.edu.sg/lib-datamanagement/data-lifecycle/>

17.

Research data management explained. [online] [cited 2019. 10. 12.]<https://library.leeds.ac.uk/info/14062/research_data_management/61/research_data_ma nagement_explained>

18.

Sarah Higgins. 2008. The DCC Curation Lifecycle Model. The International Journal of Digital Curation, 1(3): 134-140.

19.

Tanja Wissik and Matej Ďurčo. 2015. Research Data Workflows: From Research Data Lifecycle Models to Institutional Solutions. CLARIN 2015 Selected Papers․Linköping Electronic Conference Proceedings, No. 123: 94-107. [online] [cited 2019. 10. 10.]<http://www.ep.liu.se/ecp/123/008/ecp15123008.pdf>

20.

VEERLE VAN DEN EYNDEN. 2013. DATA LIFE CYCLE & DATA MANAGEMENT PLANNING. LOOKING AFTER AND MANAGING YOUR RESEARCH DATA (GOING DIGITAL AND ESRC ATN EVENTS) UK DATA ARCHIVE, COLCHESTER, 24-25APRIL 2013. [online] [Cited 2019. 10. 15.]<https://www.ukdataservice.ac.uk/media/187718/dmplanningdm24apr2013.pdf>

한국문헌정보학회지