바로가기메뉴

본문 바로가기 주메뉴 바로가기

Korean Journal of Psychology: General

An Alternative to Modeling in the ACT-R Cognitive Architecture: Focused on Enumeration Tasks

Korean Journal of Psychology: General / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2008, v.27 no.1, pp.43-70


Abstract

Cognitive architectures as unified cognitive theories can produce an integrated explanation of human mind and behaviors. The definitions of a cognitive architecture, fundamental characteristics of prominent architectures(Soar, EPIC, and ACT-R), modeling paradigm using ACT-R, and application areas of ACT-R were introduced and reviewed. The purpose of this study was to examine the modeling of a visual processing in ACT-R, which has been evolved as an unified cognitive theory, to suggest developmental directions in ACT-R. For this purpose, enumeration time of stimuli set size was measured(the enumeration task was adopted because it contains every default productions in ACT-R models established using visual stimuli). The results showed that the knowledge of set size affected on counting strategy which in turn reduced counting time for relatively larger set size of 7 to 9 items. However, the use of the strategy in enumeration appeared to be overlooked in the current cognitive architectures, especially in ACT-R. Based on the results of empirical data, a new ACT-R algorithm on visual stimuli process was proposed. Finally, the implication of the present study on the future cognitive architecture was discussed.

keywords
cognitive architecture, ACT-R, enumeration task, visual processing, subitizing, 인지 아키텍처, ACT-R, 모델링, 시각 처리 과정, 써비타이징

Reference

1.

http://act-r.psy.cmu.edu/

2.

http://act-r.psy.cmu.edu/publications

3.

http://www.apa.org/journals

4.

Aoki, T. (1977). On the counting process of patterned dots. Tohuku Psychologica Folia, 36, 15-22.

5.

Altmann, E. M., & Trafton, J. G. (1999). Memory for goals: An architectural perspective. In Proceedings of the twenty-first annual conference of the Cognitive Science Society (pp. 19-24). Hillsdale, NJ: Erlbaum.

6.

Anderson, J. R. (1972). FRAN: A simulated model of free recall. In G. B. Bower (Ed.), The Psychology of Learning and Motivation. New York: Academic Press.

7.

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence Erlbaum.

8.

Anderson, J. R. (1977). Introduction of augmented transition networks. Cognitive Science, 1, 125-157.

9.

Anderson, J. R. (1983). The architecture of cognition. Cambridge. MA: Harvard University Press.

10.

Anderson, J. R. (1993). Rules of mind. Hillsdale, NJ: Lawrence Erlbaum.

11.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111, 1036-1060.

12.

Anderson, J. R., Bothell, D., Lebiere, C. & Matessa, M. (1998). An integrated theory of list memory. Journal of Memory and Language, 38, 341-380.

13.

Anderson, J. R., & Bower, G. (1973). Human associative memory. Washington, DC: Winston.

14.

Anderson, J. R., & Douglass, S. (2001). Tower of Hanoi: Evidence for the Cost of Goal Retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1331- 1346.

15.

Anderson, J. R., & Lebiere, C. (1998). Atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.

16.

Anderson, J. R., & Matessa, M. P. (1997). A production system theory of serial memory. Psychological Review, 104, 728-748.

17.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: a theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12, 439-462.

18.

Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation limitations on retrieval. Cognitive Psychology, 30, 221-256.

19.

Ball, J. T., Gluck, K. A., Krusmark, M. A., & Rodgers, S. M. (2003). Compating three variants of a computational process model of basic aircraft maneuvering. In Proceedings of the 12th Conference on Behavior Representation in Modeling and Simulation(pp.87-89). Orlando, FL: Institute for Simulation & Training.

20.

Basak, C., & Verhaeghen, P. (2003). Subitizing Speed, Subitizing Range, Counting Speed, the Stroop Effect, and Aging: Capacity Differences and Speed Equivalence. Psychology & Aging, 18, 240-249.

21.

Byrne, M. D. (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. International Journal of Human- Computer Studies, 55, 41-84.

22.

Byrne, M. D. (2003). Cognitive architecture. In J. Jacko & A. Sears (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications(pp.97-117). Mahwah, NJ: Lawrence Erlbaum.

23.

Byrne, M. D. (2005). Cognitive architectures in HCI: Present work and future directions. In Proceedings of the 11st International Conference on Human-Computer Interaction. Las Vegas, NV.

24.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Labiere (Eds.), The atomic components of thought. Hillsdale, NJ: Erlbaum.

25.

Byrne, M. D., & Kirlik, A. (2005). Using computational cognitive modeling to diagnose possible sources of aviation error. International Journal of Aviation Psychology, 15, 135-155.

26.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.

27.

Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381-391.

28.

Foder, J. A. (1983). The modularity of the mind. Cambridge, MA: MIT Press.

29.

Fum, D., & Del Missier, F. (2001). Modeling counter offer behavior in dyadic distributive negotiation. In Proceedings of the Fourth International Conference on Cognitive Modeling (pp.79-84). Mahwah, NJ: Lawrence Erlbaum Associates.

30.

Gary, W. D., Young, R. M., & Kirschenbaum, S. S. (1997). Introduction to this special issue on cognitive architectures and human- computer interaction. Human-Computer Interaction, 12, 301-353.

31.

Haverty, L. A., Koedinger, K. R., Klahr, D., & Alibali, M. W. (2000). Solving induction problems in mathematics: Not-so-trivial pursuit. Cognitive Science, 24, 249-298.

32.

Howes, A., & Young, R. M. (1997). The role of cognitive architecture in modeling the user: Soar's learning mechanism. Human- Computer Interaction, 12, 311-343.

33.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transaction on Computer-Human Interaction, 3, 320-351.

34.

Kaufman, E., Lord, M., Reese, T., & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology, 62, 498-525.

35.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human- Computer Interaction, 12, 391-438.

36.

Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models based on the EPIC architecture for a multimodal high-performance human-computer interaction task. ACM Transactions on Computer-Human Interaction, 4, 230-275.

37.

Kinstch, W. (1988). The role of knowledge in discourse comprehension: A construction- integration model. Psychological Review, 95, 163-182.

38.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general intelligence. Artificial Intelligence, 33, 1-64.

39.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Universal subgoaling and chunking. Boston: Kluwer.

40.

Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos, & A. Musgrave. (Eds.), Criticism and the growth of knowledge. New York: Cambridge University Press.

41.

Lebiere, C., & West, R. L. (1999). A dynamic ACT-R model of simple games. In Proceedings of the Twenty-first Conference of the Cognitive Science Society(pp.296-301). Mahwah, NJ: Erlbaum.

42.

Lewis, R. L. (2001). Cognitive theory, Soar. In International Encylopedia of the Social and Behavioral Sciences. Amsterdam, Pergamon: Elsevier Science.

43.

Matessa, M., & Anderson, J. R. (1997). Focused Learning in a Linguistic Environment. In Proceedings of the 19th Annual Conference of the Cognitive Science Society (p. 990). Mahwah, NJ: Erlbaum.

44.

Meyer, D. E., & Kieras, D. E. (1997a). A computational theory of executive cognitive processes and multi-task performance: Part 1. Basic mechanisms. Psychological Review, 104, 2-65.

45.

Meyer, D. E., & Kieras, D. E. (1997b). A computational theory of executive cognitive processes and multi-task performance: Part 2. Accounts of psychological refractory-period phenomena. Psychological Review, 104, 749- 791.

46.

Newell, A. (1973a). Production systems: Models of control structures. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.

47.

Newell, A. (1973b). You can't play 20 questions with nature and win: Projective comments on the papers of this symposium. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.

48.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135-183.

49.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

50.

Newell, A., Rosenbloom, P., & Laird, J. E. (1993). Symbolic architectures for cognition. In M. I. Posner (Ed.), Foundations of cognitive science. Cambridge, MA: The MIT Press.

51.

Newell, A., & Simon, H. A. (1963). GPS, a program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computer and thought(pp.279-293). Cambridge, MA: MIT Press.

52.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Erlbaum.

53.

Oyama, T., Kikuchi, T., & Ichihara, S. (1981). Span of attention, backward masking and reaction time. Perception & Psychophysics, 29, 106-112.

54.

Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.

55.

Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.

56.

Ritter, F. E., & Wallach, D. P. (1998). Models of two-person games in ACT-R and Soar. In Proceedings of the Second European Conference on Cognitive Modelling(pp.202-203). Thrumpton: Nottingham University Press.

57.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1992). The SOAR papers: Research on integrated intelligence. Cambridge, MA: MIT Press.

58.

Rosenbloom, P. S., & Newell, A. (1988). An integrated computational model of stimulus- response compatibility and practice. In G. H. Bower (Ed.), The psychology of learning and motivation(vol. 21). New York: Academic Press.

59.

Salvucci, D. D., Chavez, A. K., & Lee, F. J. (2004). Modeling effects of age in complex tasks: A case study in driving. In Proceedings of the 26th Annual Conference of the Cognitive Science Society(pp.1197-1202). Chicago, USA.

60.

Salvucci, D. D., Zuber, M., Beregovaia, E., & Markley, D. (2005). Distract-R: Rapid prototyping and evaluation of in-vehicle interfaces. In Human Factors in Computing Systems: CHI 2005 Conference Proceedings (pp. 581-589). New York: ACM Press.

61.

Steier, D. E., Laird, J. E., Newell, A., Rosenbloom, P. S., Flynn, R. A., Golding, A., Polk, T. A., Shivers, O. G., Unruh, A., & Yost, G. R. (1987). Varieties of learning in Soar. In Proceedings of the 4th International Workshop on Machine Learning. Los Alto, CA: Mogan Kaufmann.

62.

Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capcacity preattentive process. Journal of Experiment Psychology: Human Perception and Performance, 19, 331-351.

63.

Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80-102.

Korean Journal of Psychology: General