ISSN : 1229-067X
통합은 항상 과학의 목표가 되어 왔으며 과학이 갖는 태도이기도 하다(Newell, 1990). 따라서 개별적으로 연구되어온 인지 행동들을 통합하여 설명할 수 있는 하나의 틀이 필요하다는 인식이 대두되었으며, 이를 가능하게 할 수 있는 통합이론으로서의 인지 아키텍처들(cognitive architectures)이 제안되어 발전해 왔다. 본 논문에서는 인지 아키텍처의 개념을 정리하고, 대표적인 인지 아키텍처들을 개관한 후, 가장 활발한 연구가 진행되고 있는 ACT-R의 모델링에 대해 살펴보았다. 궁극적으로 본 논문에서는 통합인지이론인 인지 아키텍처의 발전 방향을 제시하고자 하였는데, ACT-R에서 고려하지 못하고 있는 전략 사용에 따른 반응 시간 감소를 검증하였고, 선행연구에서 보고한 써비타이징 현상을 재검증하였다. 본 논문에서는 관찰된 보편적인 인간 행동의 측면들을 반영할 수 있도록 새로운 알고리듬을 제안함으로써 보다 통합되고 발전된 형태로의 인지 아키텍처를 위한 제언을 하고자 하였다.
Cognitive architectures as unified cognitive theories can produce an integrated explanation of human mind and behaviors. The definitions of a cognitive architecture, fundamental characteristics of prominent architectures(Soar, EPIC, and ACT-R), modeling paradigm using ACT-R, and application areas of ACT-R were introduced and reviewed. The purpose of this study was to examine the modeling of a visual processing in ACT-R, which has been evolved as an unified cognitive theory, to suggest developmental directions in ACT-R. For this purpose, enumeration time of stimuli set size was measured(the enumeration task was adopted because it contains every default productions in ACT-R models established using visual stimuli). The results showed that the knowledge of set size affected on counting strategy which in turn reduced counting time for relatively larger set size of 7 to 9 items. However, the use of the strategy in enumeration appeared to be overlooked in the current cognitive architectures, especially in ACT-R. Based on the results of empirical data, a new ACT-R algorithm on visual stimuli process was proposed. Finally, the implication of the present study on the future cognitive architecture was discussed.
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/publications
http://www.apa.org/journals
Aoki, T. (1977). On the counting process of patterned dots. Tohuku Psychologica Folia, 36, 15-22.
Altmann, E. M., & Trafton, J. G. (1999). Memory for goals: An architectural perspective. In Proceedings of the twenty-first annual conference of the Cognitive Science Society (pp. 19-24). Hillsdale, NJ: Erlbaum.
Anderson, J. R. (1972). FRAN: A simulated model of free recall. In G. B. Bower (Ed.), The Psychology of Learning and Motivation. New York: Academic Press.
Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence Erlbaum.
Anderson, J. R. (1977). Introduction of augmented transition networks. Cognitive Science, 1, 125-157.
Anderson, J. R. (1983). The architecture of cognition. Cambridge. MA: Harvard University Press.
Anderson, J. R. (1993). Rules of mind. Hillsdale, NJ: Lawrence Erlbaum.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111, 1036-1060.
Anderson, J. R., Bothell, D., Lebiere, C. & Matessa, M. (1998). An integrated theory of list memory. Journal of Memory and Language, 38, 341-380.
Anderson, J. R., & Bower, G. (1973). Human associative memory. Washington, DC: Winston.
Anderson, J. R., & Douglass, S. (2001). Tower of Hanoi: Evidence for the Cost of Goal Retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1331- 1346.
Anderson, J. R., & Lebiere, C. (1998). Atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.
Anderson, J. R., & Matessa, M. P. (1997). A production system theory of serial memory. Psychological Review, 104, 728-748.
Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: a theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12, 439-462.
Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation limitations on retrieval. Cognitive Psychology, 30, 221-256.
Ball, J. T., Gluck, K. A., Krusmark, M. A., & Rodgers, S. M. (2003). Compating three variants of a computational process model of basic aircraft maneuvering. In Proceedings of the 12th Conference on Behavior Representation in Modeling and Simulation(pp.87-89). Orlando, FL: Institute for Simulation & Training.
Basak, C., & Verhaeghen, P. (2003). Subitizing Speed, Subitizing Range, Counting Speed, the Stroop Effect, and Aging: Capacity Differences and Speed Equivalence. Psychology & Aging, 18, 240-249.
Byrne, M. D. (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. International Journal of Human- Computer Studies, 55, 41-84.
Byrne, M. D. (2003). Cognitive architecture. In J. Jacko & A. Sears (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications(pp.97-117). Mahwah, NJ: Lawrence Erlbaum.
Byrne, M. D. (2005). Cognitive architectures in HCI: Present work and future directions. In Proceedings of the 11st International Conference on Human-Computer Interaction. Las Vegas, NV.
Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Labiere (Eds.), The atomic components of thought. Hillsdale, NJ: Erlbaum.
Byrne, M. D., & Kirlik, A. (2005). Using computational cognitive modeling to diagnose possible sources of aviation error. International Journal of Aviation Psychology, 15, 135-155.
Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381-391.
Foder, J. A. (1983). The modularity of the mind. Cambridge, MA: MIT Press.
Fum, D., & Del Missier, F. (2001). Modeling counter offer behavior in dyadic distributive negotiation. In Proceedings of the Fourth International Conference on Cognitive Modeling (pp.79-84). Mahwah, NJ: Lawrence Erlbaum Associates.
Gary, W. D., Young, R. M., & Kirschenbaum, S. S. (1997). Introduction to this special issue on cognitive architectures and human- computer interaction. Human-Computer Interaction, 12, 301-353.
Haverty, L. A., Koedinger, K. R., Klahr, D., & Alibali, M. W. (2000). Solving induction problems in mathematics: Not-so-trivial pursuit. Cognitive Science, 24, 249-298.
Howes, A., & Young, R. M. (1997). The role of cognitive architecture in modeling the user: Soar's learning mechanism. Human- Computer Interaction, 12, 311-343.
John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transaction on Computer-Human Interaction, 3, 320-351.
Kaufman, E., Lord, M., Reese, T., & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology, 62, 498-525.
Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human- Computer Interaction, 12, 391-438.
Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models based on the EPIC architecture for a multimodal high-performance human-computer interaction task. ACM Transactions on Computer-Human Interaction, 4, 230-275.
Kinstch, W. (1988). The role of knowledge in discourse comprehension: A construction- integration model. Psychological Review, 95, 163-182.
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general intelligence. Artificial Intelligence, 33, 1-64.
Laird, J., Rosenbloom, P., & Newell, A. (1986). Universal subgoaling and chunking. Boston: Kluwer.
Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos, & A. Musgrave. (Eds.), Criticism and the growth of knowledge. New York: Cambridge University Press.
Lebiere, C., & West, R. L. (1999). A dynamic ACT-R model of simple games. In Proceedings of the Twenty-first Conference of the Cognitive Science Society(pp.296-301). Mahwah, NJ: Erlbaum.
Lewis, R. L. (2001). Cognitive theory, Soar. In International Encylopedia of the Social and Behavioral Sciences. Amsterdam, Pergamon: Elsevier Science.
Matessa, M., & Anderson, J. R. (1997). Focused Learning in a Linguistic Environment. In Proceedings of the 19th Annual Conference of the Cognitive Science Society (p. 990). Mahwah, NJ: Erlbaum.
Meyer, D. E., & Kieras, D. E. (1997a). A computational theory of executive cognitive processes and multi-task performance: Part 1. Basic mechanisms. Psychological Review, 104, 2-65.
Meyer, D. E., & Kieras, D. E. (1997b). A computational theory of executive cognitive processes and multi-task performance: Part 2. Accounts of psychological refractory-period phenomena. Psychological Review, 104, 749- 791.
Newell, A. (1973a). Production systems: Models of control structures. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.
Newell, A. (1973b). You can't play 20 questions with nature and win: Projective comments on the papers of this symposium. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.
Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135-183.
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Newell, A., Rosenbloom, P., & Laird, J. E. (1993). Symbolic architectures for cognition. In M. I. Posner (Ed.), Foundations of cognitive science. Cambridge, MA: The MIT Press.
Newell, A., & Simon, H. A. (1963). GPS, a program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computer and thought(pp.279-293). Cambridge, MA: MIT Press.
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Erlbaum.
Oyama, T., Kikuchi, T., & Ichihara, S. (1981). Span of attention, backward masking and reaction time. Perception & Psychophysics, 29, 106-112.
Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.
Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.
Ritter, F. E., & Wallach, D. P. (1998). Models of two-person games in ACT-R and Soar. In Proceedings of the Second European Conference on Cognitive Modelling(pp.202-203). Thrumpton: Nottingham University Press.
Rosenbloom, P. S., Laird, J. E., & Newell, A. (1992). The SOAR papers: Research on integrated intelligence. Cambridge, MA: MIT Press.
Rosenbloom, P. S., & Newell, A. (1988). An integrated computational model of stimulus- response compatibility and practice. In G. H. Bower (Ed.), The psychology of learning and motivation(vol. 21). New York: Academic Press.
Salvucci, D. D., Chavez, A. K., & Lee, F. J. (2004). Modeling effects of age in complex tasks: A case study in driving. In Proceedings of the 26th Annual Conference of the Cognitive Science Society(pp.1197-1202). Chicago, USA.
Salvucci, D. D., Zuber, M., Beregovaia, E., & Markley, D. (2005). Distract-R: Rapid prototyping and evaluation of in-vehicle interfaces. In Human Factors in Computing Systems: CHI 2005 Conference Proceedings (pp. 581-589). New York: ACM Press.
Steier, D. E., Laird, J. E., Newell, A., Rosenbloom, P. S., Flynn, R. A., Golding, A., Polk, T. A., Shivers, O. G., Unruh, A., & Yost, G. R. (1987). Varieties of learning in Soar. In Proceedings of the 4th International Workshop on Machine Learning. Los Alto, CA: Mogan Kaufmann.
Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capcacity preattentive process. Journal of Experiment Psychology: Human Perception and Performance, 19, 331-351.
Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80-102.