바로가기메뉴

본문 바로가기 주메뉴 바로가기

Korean Journal of Psychology: General

  • KOREAN
  • P-ISSN1229-067X
  • E-ISSN2734-1127
  • KCI

The Impact of Electronic Word of Mouth on Consumer Behavioral Intention Depending on Communication Channel Types

Korean Journal of Psychology: General / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2015, v.34 no.1, pp.335-352



Abstract

Consumers like to share their experiences with products and services through a variety of different communication channels. Since the advent of social media, they often communicate with others via social network site, blogs, and other online channels. While previous studies have mainly investigated the antecedents of consumers’ positive word-of-mouth (WOM) intentions and behaviors over social media, it still remains unclear how online communication channels affect consumer behavioral intention such as purchase intention. In this article, a stochastic model is presented to examine the relative effectiveness of online channels in improving marketing performance. The empirical results show that two-way channel has stronger impact on purchase intention than one-way channel.

keywords
확률모델, 온라인 커뮤니케이션 채널, 구전내용, 바이럴 마케팅, 구전효과, 구매의도, 소셜미디어, Online communication channel, electronic word of mouth, purchase intention, probability model

Reference

1.

American Marketing Association. (2011) The AMA Dictionary.

2.

Arndt, J. (1967). Role of product-related conversations in the diffusion of a new product. Journal of marketing Research, 4(3), 291-295.

3.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.

4.

Bagozzi, R. P. (1983). A holistic methodology for modeling consumer response to innovation. Operations Research, 31(1), 128-176.

5.

Beck, U. (1992). Risk society: Towards a new modernity, London: Sage.

6.

Boyd, D. (2007). Why youth heart social network sites: The role of networked publics in teenage social life. MacArthur Foundation Series on Digital Learning–Youth, Identity, and Digital Media, 16, 119-142.

7.

Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer‐Mediated Communication, 13(1), 210-230.

8.

Brown, J. J., & Reingen, P. H. (1987). Social ties and word-of-mouth referral behavior. Journal of Consumer research, 350-362.

9.

Bruce, N. I., Foutz, N. Z., & Kolsarici, C. (2012). Dynamic effectiveness of advertising and word of mouth in sequential distribution of new products. Journal of Marketing Research, 49(4), 469-486.

10.

Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3), 345-354.

11.

Darke, P. R., & Ritchie, R. J. (2007). The defensive consumer: Advertising deception, defensive processing, and distrust. Journal of Marketing Research, 44(1), 114-127.

12.

Day, G. S. (1971). Attitude change, media and word of mouth. Journal of Advertising Research, 11(6), 31-40.

13.

De Bruyn, A., & Lilien, G. L. (2008). A multi-stage model of word-of-mouth influence through viral marketing. International Journal of Research in Marketing, 25(3), 151-163.

14.

Duan, W., Gu, B., & Whinston, A. B. (2008). The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. Journal of Retailing, 84(2), 233-242.

15.

East, R., Hammond, K., & Lomax, W. (2008). Measuring the impact of positive and negative word of mouth on brand purchase probability. International Journal of Research in Marketing, 25(3), 215-224.

16.

Ehrenberg, A. S. C. (1972). Repeat-Buying: Theory and Applications. New York: Elsevier.

17.

Fader, P. S., & Hardie, B. G. S. (2009). Probability models for customer-base analysis. Journal of Interactive Marketing, 23(1), 61-69.

18.

Fader, P. S., Hardie B. G. S., & Lee, K. L. (2005). Counting Your Customers the Easy Way: An Alternative to the Pareto / NBD Model. Marketing Science, 24 (2), 275-284.

19.

Garton, L., Haythornthwaite, C., & Wellman, B. (1997). Studying online social networks. Journal of Computer‐Mediated Communication, 3(1).

20.

Godes, D., & Mayzlin, D. (2009). Firm-created word-of-mouth communication: Evidence from a field test. Marketing Science, 28(4), 721-739.

21.

Harrison-Walker, L. J. (2001). The measurement of word-of-mouth communication and an investigation of service quality and customer commitment as potential antecedents. Journal of Service Research, 4(1), 60-75.

22.

Hennig-Thurau., & Walsh, G. (2003). Electronic word-of-mouth: motives for and consequences of reading customer articulations on the internet. International Journal of Electronic Commerce, 8(2), 51-74.

23.

Juster, F. T. (1966). Consumer buying intentions and purchase probability: An experiment in survey design. Journal of the American Statistical Association, 61(315), 658-696.

24.

Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59-68.

25.

Katz, E., & Lazarsfeld, P. F. (1955). Personal influence: the part played by people in the flow of mass communications. Glencoe, Illinois.

26.

Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 137-146). ACM.

27.

Kwon, O., & Wen, Y. (2010). An empirical study of the factors affecting social network service use. Computers in Human Behavior, 26(2), 254- 263.

28.

Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 50(11), 1477-1490.

29.

Lilien, G. L., Kotler, P., & Moorthy, K. S. (1992). Marketing Models, Prentice Hall. Englewood Cliffs, NJ.

30.

Mayzlin, D. (2006). Promotional chat on the Internet. Marketing Science, 25(2), 155-163.

31.

McDaniel, C., & Gates, R. (1999). Contemporary Marketing Research, 4th Eds, South-Western, Cincinnati, OH.

32.

Nielsen. (2011). State of the media: The social media report Q3 2011, The Nielsen Company

33.

O'Murchu, I., Breslin, J. G., & Decker, S. (2004, August). Online Social and Business Networking Communities. In ECAI Workshop on Application of Semantic Web Technologies to Web Communities (Vol. 107).

34.

Vickery, G., & Wunsch-Vincent, S. (2007). Participative web and user-created content: Web 2.0, wikis and social networking. OECD.

35.

Reingen, P. H., & Kernan, J. B. (1986). Analysis of referral networks in marketing: Methods and illustration. Journal of Marketing Research, 370-378.

36.

Reingen, P. H., & Kernan, J. B. (1986). Analysis of referral networks in marketing: Methods and illustration. Journal of Marketing Research, 370-378.

37.

Schmitt, P., Skiera, B., & Van den Bulte, C. (2011). Referral programs and customer value. Journal of Marketing, 75(1), 46-59.

38.

Sernovitz, & Andy. (2006). “Word of Mouth Marketing: How smart companies get people talking.” Chicago: Kaplan Publishing.

39.

Smith, A. N., Fischer, E., & Yongjian, C. (2012). How does brand-related user-generated content differ across YouTube, Facebook, and Twitter?. Journal of Interactive Marketing, 26(2), 102-113.

40.

Weinberg, C. R., & Gladen, B. C. (1986). The beta-geometric distribution applied to comparative fecundability studies. Biometrics, 42, 547-560.

41.

Wright, M., & MacRae, M. (2007). Bias and variability in purchase intention scales. Journal of the Academy of Marketing Science, 35(4), 617-624.

Korean Journal of Psychology: General