바로가기메뉴

본문 바로가기 주메뉴 바로가기

Korean Journal of Psychology: General

Bifactor Modeling Approach to Investigate Studying of Psychometric Properties of Psychological Measures

Korean Journal of Psychology: General / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2017, v.36 no.4, pp.477-504
https://doi.org/10.22257/kjp.2017.09.36.3.477


Abstract

Bifactor modeling approach is increasingly being applied to the study of psychometric properties of psychological measures. A bifactor structure consists of a single general factor that is purported to explain co-variances of all the items and a set of group factors that are purported to explain residual co-variances of some items that cannot be accounted for by a general factor. The model assumes that the general and group factors are uncorrelated. Bifactor modeling approach enables researchers to test whether a given psychological scale that is originally designed to measure a theoretically unidimensional construct appears to be multidimensional due to nuisance factors such as method factors. In this article, we gave an overview of statistical indices such as omega coefficients and explained common variance(ECV) that can be effectively employed to investigate dimensionality of a given scale. We illustrated how to compute various types of omega coefficients and explained common variance(ECV) and interpret them using Rosenberg Self-esteem scale(RSES) and Emotional Approach Coping Scale(EAC).

keywords
쌍요인 모형, 일반요인, 집단요인, 오메가 계수, 일차원 지수(ECV), 확인적 요인분석, Bifactor model, general factor, group factor, omega coefficients, ECV, confirmatory factor analysis

Reference

1.

강성록, 양재원 (2015). 정서접근적 대처 척도의 타당화 예비연구. 한국심리학회지: 임상, 34(2), 455-475.

2.

고려대학교 부설 행동과학연구소편(1999). 심리척도핸드북. 서울: 학지사.

3.

배성우, 신원식 (2005) CES-D 척도(The Center for Epdemiologic Studies-Depression Scale)의요인구조 분석. 보건과 사회과학, 18, 165-190.

4.

송승훈, 김교헌, 권선중, 이홍석 (2006). 한국판외상 후 성장 척도(K-PTGI)의 신뢰도와타당도. 한국심리학회 학술대회 자료집, 252-253.

5.

신재은, 윤소진, 이태헌 (in progress). Bifactor 모형을 적용한 CES-D 척도의 차원성검증.

6.

이미리 (2005). 청소년기 자아존중감과 가족, 친구, 학업, 여가, 직업 변인들의 관계: 긍정적 자아평가와 부정적 자아평가를 중심으로. 한국청소년연구, 16(2), 263-292.

7.

이미숙 (2002). 한국판 CES-D 척도(The Center for Epdemiologic Studies-Depression Scale)의요인구조분석에 대한 재검토. 보건과 사회과학, 12, 43-62.

8.

이순묵, 채정민, 최승원 (2016). 한국형 일상우울의 예비검사 개발, 한국심리학회 학술대회 자료집. 107-107.

9.

이자영, 남숙경, 이미경, 이지희, 이상민 (2009)Rosenberg의 자아존중감 척도: 문항수준타당도분석. 한국심리학회지: 상담 및 심리치료, 21(1), 173-189.

10.

이훈진, 원호택 (1995). 편집증 척도의 신뢰도, 타당도 연구. 한국심리학회지: 임상, 14(1), 83-94.

11.

전겸구, 최상진, 양병창 (2001). 통합적 한국판CES-D 개발. 한국심리학회지: 건강, 6(1), 59-76.

12.

전병재 (1974). Self-esteem: A test of its measurability. 연세논총, 11, 109-129.

13.

정병삼 (2010). 부모-자녀관계애착과 부모지도감독이 청소년의 자아존중감의 변화에 미치는 종단적 영향. 한국청소년연구, 21(4)5-30.

14.

최수미, 조영일 (2013). 부정문항이 포함된 척도의 요인구조 및 방법효과 검증과 남녀간의 차이 비교: Rosenberg 자기존중감척도를 중심으로. 한국심리학회지: 일반, 32(3). 571-589.

15.

허만세, 박병선, 배성우 (2015). 한국어판 축약형 CES-D 척도의 측정불변성 검증. 정신보건과 사회사업. 43(2), 313-339.

16.

홍세희, 노언경, 정 송 (2011). 부정문항이 포함된 검사의 요인구조: 자아존중감 검사의 예. 교육평가연구, 24(3), 713-732.

17.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.

18.

Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16(3), 397-438.

19.

Bagozzi, R. P. (1993). Assessing construct validity in personality research: Applications to measures of self-esteem. Journal of Research in Personality, 27, 49-87.

20.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246.

21.

Bollen, K. (1989) Structural Equations with Latent Variables. New York: Wiley & Sons.

22.

Chung, C., Liao, X., Song, H., & Lee, T.(2016). Bifactor approach to modeling multidimensionality of physical self-perception profile. Measurement in Physical Education and Exercise Science, 20(1), 1-15.

23.

Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98-104.

24.

Corwyn, R. F. (2000). The factor structure of global self-esteem among adolescents and adults. Journal of Research in Personality, 34, 357-379.

25.

DiStefano, C., & Motl, R. W. (2006). Further investigating method effects associated with negatively worded items on self-report surveys. Structural Equation Modeling: A Multidisciplinary Journal, 13, 440-464.

26.

Donnellan, M. B., Ackerman, R. A., & Brecheen, C. (2016). Extending structural analyses of the Rosenberg Self-Esteem Scale to consider criterion-related validity: Can composite self-esteem scores be good enough?, Journal of Personality Assessment, 98(2), 169-177.

27.

Dunbar, M., Ford, G., Hunt, K., & Der, G.(2000). Question wording effects in the assessment of global self-esteem. European Journal of Psychological Assessment, 16, 13-19.

28.

Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105, 399-412.

29.

Fox, K. R., & Corbin, C. B. (1989). The physical self-perception profile: Development and preliminary validation. Journal of Sport and Exercise Psychology, 11(4), 408-430.

30.

Gana, K., Saada, Y., Bailly, N., Joulain, M., Herve, C., & Alaphilippe, D. (2013). Longitudinal factorial invariance of the Rosenberg Self-Esteem Scale: Determining the nature of method effects due to item wording. Journal of Research in Personality, 47, 406-416.

31.

Gomez. R., & McLean, S. (2015). The Center for Epidemiologic Studies Depression Scale:Support for a bifactor model with a dominant general factor and a specific factor for positive affect. Assessment, 22(3), 351-360.

32.

Gu, H., Wen, Z., & Fan, X. (2017). Examining and controlling for wording effect in a self-report measure: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 24(4), 545-555.

33.

Horan, P. M., DiStefano, C., & Motl, R. W.(2003). Wording effects in self-esteem scales:Methodological artifact or response style?. Structural Equation Modeling: A Multidisciplinary Journal, 10(3), 435-455.

34.

Holzinger, K. J., & Swinford, F. (1937). The bi-factor method. Psychometrika, 2(1), 41-54.

35.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.

36.

Lance, C. E., Noble, C. L., & Scullen, S. E.(2002). A critique of the correlated trait-correlated method and correlated uniqueness models for multitrait-multimethod data. Psychological methods, 7(2), 228.

37.

March, J. S. (1998). Manual for the Multidimensional Anxiety Scale for Children (MASC). Toronto: Multi-Health Systems.

38.

Marsh, H. W. (1996). Positive and negative global self-esteem: A substantively meaningful distinction or artifactors? Journal of Personality and Social Psychology, 70, 810-819.

39.

Marsh, H. W., Scalas, L. F., & Nagengast, B.(2010). Longitudinal tests of competing factor structures for the Rosenberg Self-Esteem Scale:Traits, ephemeral artifacts, and stable response styles. Psychological Assessment, 22, 366-381.

40.

McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale, NJ: Erlbaum.

41.

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Erbaum.

42.

McKay, M. T., Boduszek, D., & Harvey, S.(2014). The Rosenberg Self-Esteem Scale: A bifactor answer to a two-factor question? Journal of Personality Assessment, 96, 654-660.

43.

Murray, A. L., & Johnson, W. (2013). The limitations of model fit in comparing the bi-factor versus higher-order models of human cognitive ability structure. Intelligence, 41(5), 407-422.

44.

Muthén, B. O. (1993). Goodness of fit with categorical and other nonnormal variables. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 205-234). Newbury Park, CA: Sage.

45.

Muthén, L. K. & Muthén, B. O. (2010). Mplus User’s Guide. Los Angeles, CA: Muthén &Muthén.

46.

Quilty, L. C., Oakman, J. M., & Risko, E. (2006). Correlates of the Rosenberg Self-Esteem Scale method effects. Structural Equation Modeling: A Multidisciplinary Journal, 13(1), 99-117.

47.

Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21(2), 173-184.

48.

Raykov, T. (2001). Estimation of congeneric scale reliability using covariance structure analysis with nonlinear constraints. British Journal of Mathematical and Statistical Psychology, 54(2), 315-323.

49.

Raykov, T., & Du Toit, S. H. (2005). Estimation of reliability for multiple-component measuring instruments in hierarchical designs. Structural Equation Modeling: A Multidisciplinary Journal, 12(4), 536-550.

50.

Raykov, T., & Shrout, P. E. (2002). Reliability of scales with general structure: Point and interval estimation using a structural equation modeling approach. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 195-212.

51.

Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667-696.

52.

Reise, S. P., Bonifay, W. E., & Haviland, M. G.(2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129-140.

53.

Reise, S. P., Kim, D. S., Mansolf, M., & Widaman, K. F. (2016). Is the bifactor model a better model or is it just better at modeling implausible responses? Application of iteratively reweighted least squares to the Rosenberg Self-Esteem Scale. Multivariate Behavioral Research, 51(6), 818-838.

54.

Reise, S. P., Moore, T. M., & Haviland, M. G.(2010). Bifactor Models and rotations:Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92, 544-559.

55.

Reise, S. P., Moore, T. M., & Haviland, M. G.(2013). Applying unidimensional item response theory models to psychological data. In K. Geisinger (Ed.), APA handbook of testing and assessment in psychology: Vol. 1. Test theory and testing and assessment in industrial and organizational psychology (pp. 101-119). Washington, DC: American Psychological Association.

56.

Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16, 19-31.

57.

Revelle, W., & Zinbarg, R. E. (2009). Coefficient alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74, 145-154.

58.

Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354-373.

59.

Rodriguez, A., Reise, S. P., & Haviland, M. (2016a). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223-237.

60.

Rodriguez, A., Reise, S. P., & Haviland, M. (2016b). Evaluating bifactor models:Calculating and interpreting statistical indices. Psychological Methods, 21(2), 137-150.

61.

Rosenberg, M. (1965). Society and adolescent self-image. Princeton, NJ: Princeton University Press.

62.

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological assessment, 8(4), 350.

63.

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107-120.

64.

Stanton, A. L., Kirk, S. B., Cameron, C. L., & Danoff-Burg, S. (2000b). Coping through emotional approach: Scale construction and validation. Journal of Personality and Social Psychology, 74, 1078-1092.

65.

Stucky, B. D., & Edelen, M. O. (2014). Using hierarchical IRT models to create unidimensional measures from multidimensional data. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response theory modeling:Applications to typical performance assessment, (pp. 183-206). New York, NY: Routledge/Taylor & Francis Group.

66.

Stucky, B. D., Thissen, D., & Orlando Edelen, M. (2013). Using logistic approximations of marginal trace lines to develop short assessments. Applied Psychological Measurement, 37(1), 41-57.

67.

Supple, A. J., Su, J., Plunkett, S. W., Peterson, G. W., & Bush, K. R. (2013). Factor structure of the Rosenberg Self-Esteem Scale. Journal of Cross-Cultural Psychology, 44, 748-764.

68.

Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2, 53-55.

69.

Tedeschi, R. G., & Calhoun, L. G. (1996). The posttraumatic growth inventory: Measuring the positive legacy of trauma. Journal of Traumatic Stress, 9(3), 455-471.

70.

Ten Berge, J. M., & Sočan, G. (2004). The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika, 69(4), 613-625.

71.

Thege, B. K., Kovăcs, E., & Balog, P. (2014). A bifactor model of the Posttraumatic Growth Inventory. Health Psychology & Behaviroural Medicine, 2(1), 529-540.

72.

Tomas, J. M., & Oliver, A. (1999). Rosenberg's self‐esteem scale: Two factors or method effects. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 84-98.

73.

Wu, C. H. (2008). An examination of the wording effect in the Rosenberg Self-Esteem Scale among culturally Chinese people. The Journal of Social Psychology, 148(5), 535-552.

74.

Yang, Y., & Green, S. B. (2011). Coefficient alpha: A reliability coefficient for the 21st century? Journal of Psychoeducational Assessment, 29(4), 377-392.

75.

Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ω H: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123-133.

76.

Zinbarg, R. E., Yovel, I., Revelle, W., & McDonald, R. P. (2006). Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for ωh. Applied Psychological Measurement, 30(2), 121-144.

Korean Journal of Psychology: General