바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • ENGLISH
  • P-ISSN1229-067X
  • E-ISSN2734-1127
  • KCI

소년범죄자 재범예측 평가 시가중치 계산 방법에 관한 실증 연구

Assessment of Actuarial Tools for the Prediction of Recidivism among Incarcerated Juvenile Offenders

한국심리학회지: 일반 / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2015, v.34 no.4, pp.843-862
https://doi.org/10.22257/kjp.2015.12.34.4.843
권해수 (조선대학교)
윤일홍 (조선대학교)
김현정 (법무부 소년과)

초록

소년범죄자의 재범 위험성을 예측할 수 있는 계리적 평가 도구의 개발에 대한 실무자와 학계의 관심이 높다. 그러나 이러한 평가 도구를 개발함에 있어 가중치를 사용해야 하는 지의 여부와 가중치를 사용할 경우 구체적으로 어떤 방법을 활용하는 것이 타당한가에 대해서는 그동안 충분한 논의가 이루어지지 않았다. 본 연구는 이러한 연구 공백을 메꾸고자 요인분석, 원점수, 너필드, 단순로지스틱, 다중로지스틱 등의 다섯 가지 방법으로 도출된 가중치를 활용하여 평가도구를 개발한 후 ROC 분석과 부트스트랩 기법을 활용하여 이들의 예측정확도를 비교ㆍ분석하였다. 그 결과 다중로지스틱 회귀분석법과 너필드법의 효용 가치가 가장 높은 것으로 판명되었다. 이러한 분석 결과를 바탕으로 정책적 시사점 및 향후 연구에 대한 함의를 제시하였다. 특히 예측력이 높은 평가 도구를 개발하기 위해서는 소년원 출원 후의 일상 생활과 관련된 변인들 및 정성적 변인들의 산입이 필요함을 강조하였다.

keywords
재범 위험성, 계리적 평가도구, 소년원, 부트스트랩 기법, ROC 분석, recidivism risk, actuarial tool, juvenile detention center, bootstrapping, ROC analysis

Abstract

There exists a high degree of interest in actuarial tools that may help predict the recidivism of juvenile offenders. Yet, it has rarely been a focus of debate among scholars whether to use weights and what kinds of weights should be employed when developing such a tool. The current study fills this research gap. Specifically, the present study examined and compared the predictive accuracy of five different actuarial tools created by different methods of calculating weights. The results revealed that weights calculated by multivariate logistic regression and the Nuffield method proved to be of the highest predictive efficacy. Based on the results, we offer policy and research implications for both practitioners and future researchers. In particular, we underscore the need to incorporate variables pertaining to the routine activities of the offender after release as well as qualitative variables that are not easily quantified if a researcher wishes to develop an actuarial tool with a high predictive efficacy.

keywords
재범 위험성, 계리적 평가도구, 소년원, 부트스트랩 기법, ROC 분석, recidivism risk, actuarial tool, juvenile detention center, bootstrapping, ROC analysis

참고문헌

1.

강동욱 (2012). 소년사법과 소년범 처리실태에관한 고찰. 비교법연구, 12(2), 9-48.

2.

권해수, 이연상 (2013). 탈비행에 성공원 소년원 출원생의 생활 실태 분석. 청소년시설환경, 11(3), 125-136.

3.

김덕준 (2003). 지역개발격차의 측정 및 원인분석에 관한 연구. 행정논총, 41(4), 279-308.

4.

김양곤, 이수정, 이민식 (2005). 소년보호관찰대상자에 대한 분류평가도구 개발에 관한 연구. 서울: 한국형사정책연구원.

5.

김태일 (1999). 요인분석을 활용한 종합점수화기법 II. 정책분석평가학회보, 9(2), 185-200.

6.

김태일 (2000). 수리적 기법에 의한 평가모형체계의 가중치 부여방식에 관한 논의. 한국행정학보, 33(4), 243-258.

7.

노일석 (2007). 성폭력 보호관찰청소년 재범위험성 예측도구 개발: 이종, 동종을 포함한 일반재범위험성을 중심으로. 연세대학교 대학원 석사학위논문.

8.

노일석 (2009). 청소년 절도사범 재범 예측 요인: 절도 소년보호관찰대상자 재범위험성평가도구(LJP-RRAR) 개발 연구. 한국심리학회: 일반, 28(2), 449-470.

9.

노일석 (2010). 남자 청소년 폭력사범 재범 예측 요인: 남자 폭력소년 보호관찰대상자재범위험성 평가도구(MVJP-RRAR) 개발연구. 형사정책연구, 21(3), 350-379.

10.

노일석, 정진경 (2009). 여자 청소년 폭력사범재범 예측 요인: 여자 폭력소년 보호관찰대상자 재범위험성 평가도구(FVJP-PRAR)개발 연구. 한국심리학회: 여성, 14(3), 365-386.

11.

박성복 (1996). 지역발전격차의 분석 시론. 한국행정논집, 8(2), 1-19.

12.

박영규 (2011). 소년원 송치처분의 개선방안. 교정연구, 54, 53-84.

13.

서석교 (2011). TEAMS 비행위험성 진단체계평가규준 개발에 관한 연구. 소년보호연구, 16, 107-164.

14.

윤옥경 (2011). 한국 소년범죄의 추세와 소년보호관찰의 정책방향. 소년보호연구, 17, 35-57.

15.

황지태 (2009). 공식통계와 범죄피해조사의 상반된 결과에 대한 설명. 형사정책연구, 20(1), 279-303.

16.

Bonta, J., Harman, W., Hann, R., & Cormier, R. (1996). The prediction of recidivism among federally sentenced offenders: A revalidation of the SIR scale. Canadian Journal of Criminology, 38, 61-79.

17.

Cattell, R. (1958). Extracting the correct number of factors in factor analysis. Educational and Psychological Measurement, 18, 791-837.

18.

Cohen, J., & Cohen, P. (1983). Applied Multiple Regression/correlation Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum.

19.

Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45, 1304-1312.

20.

Duwe, G., & Freske, P. (2012). Using logistic regression modeling to predict sexual recidivism: The Minnesota sex offender screening tool-3 (MnSOST-3). Sexual Abuse: A Journal of Research and Treatment, 24(4), 350-377.

21.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1-26.

22.

Eher, R., Rettenberger, M., Schilling, F., & Pfafflin, F. (2008). Failure of Static-99 and SORAG to predict relevant re-offense categories in relevant sexual offender subtypes:A prospective study. Sexual Offender Treatment, 8(1), 1-20.

23.

Grann, M., & Langstrom, N. (2007). Actuarial assessment of violence risk: To weigh or not to weigh? Criminal Justice and Behavior, 34(1), 22-36.

24.

Krysik, J., & LeCroy, C. (2002). The empirical validation of an instrument to predict risk of recidivism among juvenile offenders. Research on Social Work Practice, 12(1), 71-81.

25.

Laub, J., & Sampson, R. (2001). Understanding desistance from crime. Crime and Justice, 28, 1-69.

26.

Maruna, S., 2001. Making Good: How Ex-offenders Reform and Reclaim Their lives. Washington, DC.: American Psychological Association Books.

27.

Nuffield, J. (1982). Parole Decision-making in Canada: Research Towards Decision Guidelines. Ottawa: Solicitor General of Canada.

28.

Pundir, S., & Amala, R. (2014). Evaluation of area under the constant shape bi-Weibull ROC curve. Journal of Modern Applied Statistical Methods, 13(1), 20.

29.

Quinsey, V., Rice, M., & Harris, C. (1995). Actuarial prediction of sexual recidivism.. Journal of Interpersonal Violence, 10, 85-105.

30.

Spitzer, S. (1975). Punishment and social organization: A study of Durkheim's theory of penal evolution. Law and Society Review, 9, 613-637.

31.

StataCorp. (2013). Stata Statistical Software: Release 13. Stata Corporation: College Station, TX.

32.

Steyerberg, E. (2009). Clinical prediction models: A Practical Approach to Development, Validation, and Updating. New York, NY: Springer.

33.

Steyerberg, E., Bleeker, S., Moll, H., Grobbee, D., & Moons, K. (2003). Internal and external validation of predictive models: A simulation study of bias and precision in small samples. Journal of Clinical Epidemiology, 56(5), 441-447.

34.

Tabachnick, B. G., & Fidell, L. S. (2001). Using Multivariate Statistics. Boston: Ally and Bacon.

35.

Thompson, B. (1993). The use of statistical significance tests in research: Bootstrap and other alternatives. Journal of Experimental Education, 61, 361-377.

36.

Van Dijk, J. (2006). International Comparisons of Crime: The ICVS and More. Presented at the British Crime Survey 25th Anniversary Conference at Cumberland Lodge. England, 16-17 October, 2006.

37.

Wolfgang, M., Figlio, R., & Sellin, T. (1972). Delinquency in a Birth Cohort. Chicago, IL: The University of Chicago Press.

한국심리학회지: 일반