바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

코로나19(COVID-19)의 초국가적 전파와 세계 항공 네트워크의 변화 간 연관성에 대한 시론적 연구: 연결 중심성을 이용한 항공 네트워크의 전역적·지역적 변화 탐색

An Early Assessment of Relationship between Spatial Diffusion of Covid-19 and Evolving Worldwide Commercial Aviation Network: Exploring Global and Local Changes in Aviation Networks Using Node Degree Centrality

공간과 사회 / Space and Environment, (P)1225-6706; (E)2733-4295
2020, v.30 no.3, pp.138-166
https://doi.org/10.19097/kaser.2020.30.3.138
박용하 (한국교통연구원)
손정웅 (한국교통연구원)
  • 다운로드 수
  • 조회수

초록

코로나19 팬데믹의 영향으로 인한 세계 항공시장의 침체가 지속되고 있다. 본 연구는 코로나19 확산에 따른 항공시장의 변화를 이해하기 위한 시론적 연구로서, 2020년 상반기 동안국가별 코로나19의 확산 양상과 동 기간 세계 항공 네트워크의 전역적·지역적 축소 양상을분석하고, 나아가 이 두 시공간 패턴 간 연관성을 탐색하고자 하였다. 이를 위해 ① K-평균 군집 분석을 이용하여 확진자 증가 추세가 유사한 국가들의 지역적 분포를 누적 확진자 규모와그 규모에 도달한 시기에 따라 단계적으로 살폈다. ② 네트워크 분석의 연결 중심성 지표 등을 이용하여 항공 네트워크의 시기별·지역별 차별적인 변화 추이를 분석하였다. ③ 마지막으로 군집 분석을 통해 도출된 확산 양상이 유사한 국가 군집 간 항공 네트워크의 연결 중심성감소 추이에 대한 비교 분석을 통해 두 시공간 패턴 사이의 연관성을 살폈다. 분석 결과, 지난상반기 동안 세계 항공 네트워크는 중·대형 허브들을 중심으로 연결성이 급속히 감소함에 따라 네트워크의 범위와 밀도가 축소되었음을 확인하였다. 또한, 지역 또는 국가 간 연결성의감소 시기와 정도에는 편차가 존재하고 있었다.

keywords
코로나19, 전염병 확산, 글로벌 항공시장, 항공 네트워크, 네트워크 분석, COVID-19, DISEASE PROPAGATION, GLOBAL AVIATION MARKET, AIR TRANSPORT NETWORK, NETWORK ANALYSIS

Abstract

According to the COVID-19 pandemic, global aviation market is becoming stagnant. This study is an early assessment to understand crucial impact of the disease propagation on the aviation market through analyzing degree centrality changes of airports in the World Air transport Network(WAN), in comparison to spreading patterns of the disease. We employ K-means clustering to figure out spatio-temporal phases of the disease spread across countries in the world. Then, we apply degree centrality measure of the network analysis to OAG airlines schedules data, in order to capture the temporal changes of degree centrality distribution. Finally, we examine differential patterns of degree centrality distributions across countries grouped by the spatio-temporal phases of disease spread patterns. As a result, we find that density and size of the WAN have rapidly decreased from January to June in 2020, mainly affected by decreasing connectivity of medium- and large-hubs. Furthermore, the decreasing connectivity patterns appear differentially among regions and countries, with respect to their fluctuating periods and levels.

keywords
코로나19, 전염병 확산, 글로벌 항공시장, 항공 네트워크, 네트워크 분석, COVID-19, DISEASE PROPAGATION, GLOBAL AVIATION MARKET, AIR TRANSPORT NETWORK, NETWORK ANALYSIS

참고문헌

1.

이덕희. 2008. 『네트워크 이코노미(부분과 전체의 복잡성에 대하여)』. 동아시아.

2.

배현준‧박용화‧김영인. 2017. 「아시아 주요공항의 저비용항공사 네트워크 분석」. ≪대한교통학회지≫, 35권, 247-259.

3.

보건복지부. 2020. “코로나바이러스감염증-19 중앙재난안전대책본부 정례브리핑 (2020.7.10.).” http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&page=1&CONT_SEQ=355351(검색일: 2020.07.10.)

4.

신태진‧김석‧정세연. 2020. 「코로나 19 확산이 동북아 공항 네트워크 중심성 지수에 미친 영향: 소셜 네트워크 분석을 중심으로」. ≪디지털융복합연구≫, 18(5), 179-186.

5.

외교부. 2020a. “코로나19 확산 관련 각국의 해외입국자에 대한 조치 현황.” http://overseas.mofa.go.kr(검색일: 2020.8.24.)

6.

외교부. 2020b. “코로나19 확산 관련 각국의 해외입국자에 대한 조치 현황.” http://overseas.mofa.go.kr(검색일: 2020.7.9.)

7.

한국공항공사. 2020. “코로나 이후 시기별 해외여행 의향.”

8.

한국교통연구원. 2015. 「메르스(MERS-Cov)확산에 따른 항공수요 변화 현안분석 보고서 」.(2015.7.) 6월호.

9.

Abu-Rayash, A., & I. Dincer, 2020. “Analysis of mobility trends during the COVID-19coronavirus pandemic: Exploring the impacts on global aviation and travel in selected cities.” Energy research & social science, 101693.

10.

ACI. 2020. “ACI ADVISORY Bulletin.” https://aci.aero/wp-content/uploads/2020/05/200505-Third-Economic-Impact-Bulletin-FINAL.pdf(검색일: 2020.5.5.)

11.

Allroggen, F., Wittman, M. D., and Malina, R. 2015. How air transport connects the world–A new metric of air connectivity and its evolution between 1990 and 2012. Transportation Research Part E: Logistics and Transportation Review, 80, pp. 184-201.

12.

Anzai, A., T. Kobayashi, N. M. Linton, R. Kinoshita, K. Hayashi, A. Suzuki, Y. Yang, S-M. Jung, T. Miyama, A. R. Akhmetzhanov and H. Nishiura. 2020. “Assessing the impact of reduced travel on exportation dynamics of novel coronavirus infection (COVID-19).” Journal of clinical medicine, 9(2), pp. 601.

13.

Albers, S., and V. Rundshagen. 2020. “European airlines′ strategic responses to the COVID-19 pandemic (January-May, 2020).” Journal of Air Transport Management, 87, 101863.

14.

Barabási, A. L., and R. Albert. 1999. “Emergence of scaling in random networks.” science, pp. 509-512.

15.

Beck, M. J., and D. A. Hensher. 2020. “Insights into the impact of COVID-19 on household travel and activities in Australia–The early days under restrictions.”Transport Policy, 96, pp. 76-93.

16.

Chi, J., and J. Baek. 2013. “Dynamic relationship between air transport demand and economic growth in the United States: A new look.” Transport Policy, 29, pp.257-260.

17.

Chinazzi, M., J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. P. Piontti, K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. E. Halloran, I. M. Longini JR and Vespignani, A. 2020. “The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.” Science, 368(6489), pp. 395-400.

18.

Dai, L., Derudder, B., and Liu, X. 2018. The evolving structure of the Southeast Asian air transport network through the lens of complex networks, 1979–2012. Journal of Transport Geography, pp. 68, 67-77.

19.

Datahub. 2020. https://datahub.io/core/covid-19#resource-time-series-19-covidcombined(접속일: 2020. 8.15.)

20.

Fuellhart, K., Ooms, K., Derudder, B., and O’Connor, K. 2016. Patterns of US air transport across the economic unevenness of 2003–2013. Journal of Maps, 12(5), pp. 1253-1257.

21.

Grady, D., C. Thiemann and D. Brockmann. 2012. “Robust classification of salient links in complex networks.” Nature communications, 3(1), pp. 1-10.

22.

Graham, A., F. Kremarik and W. Kruse. 2020. “Attitudes of ageing passengers to air travel since the coronavirus pandemic.” Journal of Air Transport Management, 87, 101865.

23.

Gössling, S., D. Scott and C. M. Hall. 2020. “Pandemics, tourism and global change: a rapid assessment of COVID-19.” Journal of Sustainable Tourism, pp. 1-20.

24.

Gudmundsson, S. V., M. Cattaneo, and R. Redondi 2020. “Forecasting recovery time in air transport markets in the presence of large economic shocks: COVID-19.”Available at SSRN 3623040.

25.

Guimera, R., and L. A. N. Amaral. 2004. “Modeling the world-wide airport network.” The European Physical Journal B, 38(2), pp. 381-385.

26.

Guimera, R., Mossa, S., Turtschi, A., and Amaral, L. N. 2005. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences, 102(22), pp. 7794-7799.

27.

IATAa. 2020. “Air Passenger Forecasts.” https://www.iata.org/en/publications/economics/ (검색일: 2020. 4.)

28.

IATAb, 2020. “Slow Recovery Needs Confidence Boosting Measures,” https://www.iata.org/en/pressroom/pr/2020-04-21-01/.(검색일 2020.4.)

29.

ICAO. 2020. “Effects of Novel Coronavirus(COVID-19) on Civil Aviation: Economic Impact Analysis.” https://www.icao.int/sustainability/Documents/COVID-19/ICAO_Coronavirus_Econ_Impact.pdf(검색일: 2020.6.26.)

30.

Jiang, Y., Yao, B., Wang, L., Feng, T., and Kong, L. 2017. Evolution trends of the network structure of Spring Airlines in China: A temporal and spatial analysis. Journal of Air Transport Management, 60, pp. 18-30.

31.

Lordan, O., J. M. Sallan and P. Simo. 2014 “Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda.” Journal of Transport Geography, 37, pp. 112-120.

32.

McKinsey & Company. 2020. “COVID-19: Briefing note #2(2020.3.9.).” https://www. mckinsey.com/business-functions/risk/our-insights/covid-19-implications-for-bu siness?cid=soc-app#(검색일: 2020.8.3.)

33.

OAG. 2020. “UNDERSTAND THE AIRLINE SCHEDULE CHANGES AND MANAGE THE IMPACT.” https://www.oag.com/coronavirus-airline-schedules-data(검색일: 2020.7.27.)

34.

O’Kelly, M. E. 2016. “Global airline networks: comparative nodal access measures.”Spatial Economic Analysis, 11(3), pp. 253-275.

35.

Pearce, Brian. 2012. “The state of air transport markets and the airline industry after the great recession.” Journal of Air Transport Management, 21, pp. 3-9.

36.

Reynolds‐Feighan, A. J. 1998. “The impact of US airline deregulation on airport traffic patterns.” Geographical Analysis, 30(3), pp. 234-253.

37.

Su, M., Luan, W., Li, Z., Wan, S., and Zhang, Z. 2019. Evolution and determinants of an air transport network: A case study of the Chinese main air transport network. Sustainability, 11(14), pp. 3933.

38.

Suau-Sanchez, P., A. Voltes-Dorta and N. Cugueró-Escofet. 2020. “An early assessment of the impact of COVID-19 on air transport: Just another crisis or the end of aviation as we know it?.” Journal of Transport Geography, 86, 102749.

39.

Tian, H., Z. Sun, N., Faria, R., Yang, J., Cazelles, B., Huang, and Xu, B. 2017. “Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia.” PLoS neglected tropical diseases, 11(8), e0005694.

40.

UNWTO. 2020. “INTERNATIONAL TOURIST NUMBERS COULD FALL 60-80% IN 2020.” https://www.unwto.org/news/covid-19-international-tourist-numberscould-fall-60-80-in-2020(검색일: 2020.7.6.)

41.

Wang, J., Mo, H., Wang, F., and Jin, F. 2011. Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach. Journal of Transport Geography, 19(4), pp. 712-721.

42.

Watts, D. J., and Strogatz, S. H. 1998. Collective dynamics of ‘small-world’networks. nature, 393(6684), pp. 440-442.

43.

Wenzel, M., S. Stanske, and M. B. Lieberman. 2020. “Strategic responses to crisis.”Strategic Management Journal.

44.

Zhuang, Z., S. Zhao, Q. Lin, P. Cao, Y. Lou, L. Yang, and D. He. 2020. “Preliminary estimation of the novel coronavirus disease (COVID-19) cases in Iran: A modelling analysis based on overseas cases and air travel data.” International Journal of Infectious Diseases, 94, pp. 29-31.

공간과 사회