바로가기메뉴

본문 바로가기 주메뉴 바로가기

Korean Journal of Psychology: General

  • KOREAN
  • P-ISSN1229-067X
  • E-ISSN2734-1127
  • KCI

Exploratory Factor Analysis: How has it Changed?

Korean Journal of Psychology: General / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2016, v.35 no.1, pp.217-255
https://doi.org/10.22257/kjp.2016.03.35.1.217




Abstract

In the present study new developments in EFA(Exploratory Factor Analysis) that have occurred at the turn of the 21th century are discussed. New guidelines and an analysis of real data following the guidelines are given with practical comments. First, in a process of determining the number of factors, MRFA (minimum rank factor analysis) is recommended as the best method of Parallel Analysis (PA) instead of Horn's method (1965) and PA-PAFA (parallel analysis in principal axis factor analysis). Various fit indices such as CFI, RMSEA, and etc. allow us to consider “various psychometric criteria” before determining the number of factors as the indices are less sensitive to sample sizes than the conventional statistic. In addition estimation methods that are applicable to categorical data (dichotomous or polytomous) have been developed so that item factor analysis can be readily performed for categorical data. Second, in a process of rotating factor structures, “simple” oblique structure can be easily computed just by minimzing the value of complexity function, and a “partially specified target” rotaion is also available adopting a target matrix whose elements are partially hypothesized by a researcher. Finally, in a process of interpreting factor structures, ESEM (Exploratory Structural Equation Modeling) will get prevalence in the near future as it allows us to free correlations between unique factors (measurement errors) and can produce more practical and interpretable factor stucutures. New guidelines on EFA are described in detail in the later part of this paper.

keywords
탐색적 요인분석, 공통요인분석, 탐색적 회전, 목표회전, 탐색적 구조방정식 모형, exploratory factor analysis, common factor analysis, exploratory rotation, target rotation, exploratory sturctural equation modeling

Reference

1.

김교헌, 권선중, 김세진, 이순묵 (2011). 저수준도박행동 연구를 위한 개념화 및 척도개발. 한국심리학회지: 일반, 30(2), 599-628.

2.

김종규, 이순묵, 윤창영 (2015). 핵심자기평가의 내적 구조 검토: 탐색적 구조방정식모형(ESEM)의 적용을 통한 선언척도와 실제 척도의 차이 검토. 한국심리학회지: 산업 및 조직. 28(3), 355-384.

3.

남궁준재, 이순묵, 김효선 (2013). 상황판단검사에서 시나리오 효과를 통제한 탐색적요인분석. 한국심리학회지: 산업 및 조직.26(4), 599-624.

4.

안정원, 이순묵 (2015). 조직몰입 3요소 모형의내적구조 검토: 탐색적 구조방정식 모형(ESEM)의 적용. 한국심리학회지: 산업 및조직. 28(4), 795-827.

5.

이순묵 (1995). 요인분석 I. 서울: 학지사

6.

이순묵 (2000). 요인분석의 기초. 서울: 교육과학사.

7.

장승민 (2015). 리커트 척도개발을 위한 탐색적 요인분석의 활용, 한국심리학회지: 임상, 34(4), 1079-1100.

8.

Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16(3), 397-438.

9.

Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31, 419-456.

10.

Bentler, P. M. & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78-117.

11.

Bentler, P. M. & Kano, Y. (1990). On the equivalence of factors and components. Multivariate Behavioral Research, 25(1), 67-74.

12.

Bock, R. D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.

13.

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-Information item factor analysis. Applied Psychological measurement, 12(3), 261-280.

14.

Bovaird, J. A. & Koziol, N. A. (2012). Measurement models for ordered-categorical indicators. In R. H. Hoyle (Ed.), Handbook of Structural Equation Modeling (pp.495-511). NY: Guilford Press.

15.

Briggs, N. E. & MacCallum, R. C. (2003). Recovery of weak common factors by maximum likelihood and ordinary least squares estimation. Multivariate Behavioral Research, 38(1), 25-56.

16.

Brogden, H. E. (1969). Pattern, structure, and the interpretation of factors. Psychological Bulletin, 72, 375-378.

17.

Browne, M. W. (1972). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207-212.

18.

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111-150.

19.

Cattell, R. B (1966). The Scree test for the Number of Factors. Multivariate Behavioral Research, 1, 245-276.

20.

Cattell, R. B. & Dickman, K. (1962). A Dynamic Model of hysical influences demonstrating the necessity of oblique simple structure. Psychological Bulletin, 59, 389-400.

21.

Cattell, R. B. & Gorsuch, R. L. (1963). “The Uniqueness and Significance of Simple Structure Demonstrated by Contrasting Organic ‘Natural Structure’ and ‘Random Structure’ Data.” Psychometrika, 28, 55-67.

22.

Cerny, B. A. & Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factoranalytic correlation matrices. The Journal of Multivariate Behavioral Research, 12, 43-47.

23.

Chen, J. & Choi, J. (2009). A comparison of maximum likelihood and expected a posteriori estimation for polychoric correlation using Monte Carlo simulation. Journal of Modern Applied Statistical methods, 8, 337-354.

24.

Christofferson, A. (1975). Factor analysis of dichotomous variables. Psychometrika, 40, 5-32.

25.

Cudeck, R. & O'Dell, L. L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475-487.

26.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299.

27.

Finch, H. & Monahan, P. (2008). A bootstrap generalization of modified parallel analysis for IRT dimensionality assessment. Applied Measurement in Education, 21, 119-140.

28.

Forero, C. G., Maydeu-Olivares, A. & Gallardo- Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte-Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625-641.

29.

Gorsuch, R. L. (1983). Factor Analysis, 2nd Ed. Hillsdale, NJ: Lawrence Erlbaum.

30.

Guilford, J. P. (1981). Higher-order structure-ofintellect abilities. Multivariate Behavioral Research, 16, 411-435.

31.

Harman, H. H. (1976). Modern factor analysis, 3rd Ed. Chicago, IL: Chicago University Press.

32.

Harman, H. H. & Jones, W. H. (1966). Factor analysis minimizing residuals(Minres). Psychometrika, 31, 351-368.

33.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185.

34.

Hu, L. & Bentler, P. M. (1999). Cutoff Criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.

35.

Humphreys, L. G. & Ilgen, D. R. (1969). Note on a criterion for the number of common factors. Educational and Psychological Measurement, 29, 571-578.

36.

Jöreskog, K. G. & Sörbom, D. (1989). LISREL 7: A Guide to the Programs and Applications (2nd Ed.). Chicago, IL.: SPSS Inc.

37.

Jung, S. & Lee, S. (2011). Exploratory factor analysis for small samples. Behavioral Research Methods, 43, 701-709.

38.

Jung, S. & Takane, Y. (2008). Regularized exploratory factor analysis. In K. Shigemasu, A. Okada, T. Imaizumi, & T. Hoshino (Eds.). New trends in psychometrics (pp. 141-149). Tokyo: University Academic Press.

39.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 34, 183-202.

40.

Knol DL, Berger MPF. (1991). Empirical comparison between factor analysis and multidimensional item response models. Multivariate Behavioral Research, 26, 457-477.

41.

Lee, C-T, Zhang, G., & Edwards, M. C. (2012). Ordinary least squares estimation of parameters in exploratory factor analysis with ordinal data. Multivariate Behavioral Research, 47, 314-339.

42.

Lee, S. (2010). A review of CEFA software: Comprehensive exploratory factor analysis program.. International Journal of Testing, 10, 95-103.

43.

Lorenzo-Seva, U & Ferrando, P. J. (2015). FACTOR 10.3. University of Rovira i Virgili, Spain.

44.

Lorenzo-Seva, U. & Ferrando, P. J. (2015). POLYMAT-C: A comprehensive SPSS program for computing the polychoric correlation matrix. Behavioral Research Methods, 47, 884-889.

45.

MacCallum, R. C. (2003). Working with imperfect models. Multivariate Behavioral Research, 38(1), 113-139.

46.

McDonald, R. P. (1985). Factor analysis and ralated methods, Hillsdale, NJ: Lawerence Erlbaum.

47.

McDonald, R. P. (2005). Semiconfirmatory factor analysis: The example of anxiety and depression. Structural Equation Modeling, 12(1), 163-172.

48.

Millsap, R. E. & Kim, H. (In press). Factorial invariance across multiple populations in discrete and continuous data. In P. Irwing, T. Booth, & D. Hughes (Eds.), The Wiley Handbook of Psychometric Testing. London: John Wiley & Sons.

49.

Montanelli, R. G. Jr. & Humphreys, L. G. (1976). Latent Roots of Random Data Correlation Matrices with Squared Multiple Correlation on the Diagonal: A Monte Carlo Study. Psychometrika, 41, 341-347.

50.

Mulaik, S. A. (2010). Foundations of factor analysis, 2nd Ed. Boca Raton FL: Chapman & Hall.

51.

Muthen, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115-132.

52.

Muthen, B. O. (1993). Goodness of fit with categorical and other non-normal variables. In K. A. Bollen & J. S. Long (Eds.), Testing Structural Equation Models (pp. 205-243). Newbury Park, CA: Sage.

53.

Muthen, B. O., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Unpublished manuscript.

54.

Muthen, L. K. and Muthen, B. O. (1998-2012). Mplus User’s Guide, 7th Ed. Los Angeles, CA: Muthen & Muthen.

55.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of comonents using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402.

56.

Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling, 7(4), 557-595.

57.

Preacher, K. J. & MacCallum, R. C. (2003). Repairing Tom Swift’s Electric Factor Analysis machine. Understanding Statistics, 2(1), 13-43.

58.

Rummell, R. J. (1970). Applied factor analysis. Evanston, IL: Northwestern Univ. Press.

59.

Spearman, C. (1904). “General Intelligence,” objectively determined and measured. The American Journal of Psychology, 15(2), 201-293.

60.

ten Berge, J. M. F. & Kiers, H. A. L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, 56, 309-315.

61.

Thomson, G. H. (1934). Hotelling's method modified to give Spearman's g. Journal of Educational Psychology, 25, 366-374.

62.

Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago Press.

63.

Thurstone, L. L. (1935). The vectors of mind. Chicago: Univ. of Chicago Press.

64.

Timmerman, M. E. & Loranzo-Seva U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220.

65.

Vandenberg, R. J. & Lance, C. E. (2000). A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research. Organizational Research Methods, 3(1), 4-70.

66.

Wirth, R. J. & Edwards, M. C. (2007). Items factor analysis: Current approaches and future directions. Psychological Methods, 12(1), 58-79.

67.

Yu, C-Y (2012). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Unublished Doctoral Thesis. University of California, Los Angeles.

Korean Journal of Psychology: General