ISSN : 1229-067X
본 연구에서는 21세기 전후하여 새롭게 제안된 탐색적 요인분석(EFA)에 대한 지침들을 정리하고 실제 자료의 분석 예를 제시하였다. 대략적인 요인수효를 결정하기 위한 발견법(heuristics)의 내용가운데 평행성 분석에 대한 평가가 정리되었고 랜덤자료에서의 고유치로서 기존의 Horn(1965) 방식이나 주축요인방식이 아닌, 최소계수요인 방식(MRFA: minimum rank factor analysis)에서의 고유치가 권고된다. 요인수효 결정을 위한 추론적 접근에서 합치도의 참조는 카이제곱 검증뿐만 아니라 표본 크기에 영향을 덜 받는 다양한 판단적 합치도(예: CFI, RMSEA 등)를 함께 참조할 수 있고 이로 인해 요인수효 결정에서 “다양한 정보의 종합적 사용”이 가능해졌다. 여기에 서열자료 분석에 사용될 수 있는 추정법이 개발되면서, 문항점수들을 연속변수에 준하는 것으로 보고 피어슨상관을 구하여 고전적 요인분석을 하는 관행을 벗어나 문항의 범주별 반응형태를 반영하는 문항요인분석이 현실화되었다. 요인구조의 회전에 있어서는 사각구조의 추정이 용이해졌고, 임의적인 파라메터의 설정 없이 복잡도 함수만을 최소화함으로써 단순구조를 추구할 수 있게 되었다. 또한 탐색과정에서 연구자의 내용적 판단을 반영하는 목표행렬을 주고 그 방향을 따르도록 회전하는 부분제약 목표회전의 사용이 가능해져 이전의 기계적인 회전을 벗어나게 되었다. 요인구조의 해석 가능성에서 가장 큰 변화로 볼 수 있는 것은 측정오차 간 상관을 허용하는 탐색적 구조방정식 모형(ESEM: Exploratory Structural Equation Modeling)이 개발되어, EFA를 할 때 측정오차 간 상관이 없다는 종래의 강한 가정을 완화시키면서 현실적이고 해석 가능한 구조를 산출하게 되었다. 실제 자료의 분석 예시에서는 탐색적 요인분석에서 새로운 지침들이 어떻게 활용되고 있는지를 상세히 설명하고 있다.
In the present study new developments in EFA(Exploratory Factor Analysis) that have occurred at the turn of the 21th century are discussed. New guidelines and an analysis of real data following the guidelines are given with practical comments. First, in a process of determining the number of factors, MRFA (minimum rank factor analysis) is recommended as the best method of Parallel Analysis (PA) instead of Horn's method (1965) and PA-PAFA (parallel analysis in principal axis factor analysis). Various fit indices such as CFI, RMSEA, and etc. allow us to consider “various psychometric criteria” before determining the number of factors as the indices are less sensitive to sample sizes than the conventional statistic. In addition estimation methods that are applicable to categorical data (dichotomous or polytomous) have been developed so that item factor analysis can be readily performed for categorical data. Second, in a process of rotating factor structures, “simple” oblique structure can be easily computed just by minimzing the value of complexity function, and a “partially specified target” rotaion is also available adopting a target matrix whose elements are partially hypothesized by a researcher. Finally, in a process of interpreting factor structures, ESEM (Exploratory Structural Equation Modeling) will get prevalence in the near future as it allows us to free correlations between unique factors (measurement errors) and can produce more practical and interpretable factor stucutures. New guidelines on EFA are described in detail in the later part of this paper.
김교헌, 권선중, 김세진, 이순묵 (2011). 저수준도박행동 연구를 위한 개념화 및 척도개발. 한국심리학회지: 일반, 30(2), 599-628.
김종규, 이순묵, 윤창영 (2015). 핵심자기평가의 내적 구조 검토: 탐색적 구조방정식모형(ESEM)의 적용을 통한 선언척도와 실제 척도의 차이 검토. 한국심리학회지: 산업 및 조직. 28(3), 355-384.
남궁준재, 이순묵, 김효선 (2013). 상황판단검사에서 시나리오 효과를 통제한 탐색적요인분석. 한국심리학회지: 산업 및 조직.26(4), 599-624.
안정원, 이순묵 (2015). 조직몰입 3요소 모형의내적구조 검토: 탐색적 구조방정식 모형(ESEM)의 적용. 한국심리학회지: 산업 및조직. 28(4), 795-827.
이순묵 (1995). 요인분석 I. 서울: 학지사
이순묵 (2000). 요인분석의 기초. 서울: 교육과학사.
장승민 (2015). 리커트 척도개발을 위한 탐색적 요인분석의 활용, 한국심리학회지: 임상, 34(4), 1079-1100.
Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16(3), 397-438.
Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31, 419-456.
Bentler, P. M. & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78-117.
Bentler, P. M. & Kano, Y. (1990). On the equivalence of factors and components. Multivariate Behavioral Research, 25(1), 67-74.
Bock, R. D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.
Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-Information item factor analysis. Applied Psychological measurement, 12(3), 261-280.
Bovaird, J. A. & Koziol, N. A. (2012). Measurement models for ordered-categorical indicators. In R. H. Hoyle (Ed.), Handbook of Structural Equation Modeling (pp.495-511). NY: Guilford Press.
Briggs, N. E. & MacCallum, R. C. (2003). Recovery of weak common factors by maximum likelihood and ordinary least squares estimation. Multivariate Behavioral Research, 38(1), 25-56.
Brogden, H. E. (1969). Pattern, structure, and the interpretation of factors. Psychological Bulletin, 72, 375-378.
Browne, M. W. (1972). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207-212.
Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111-150.
Cattell, R. B (1966). The Scree test for the Number of Factors. Multivariate Behavioral Research, 1, 245-276.
Cattell, R. B. & Dickman, K. (1962). A Dynamic Model of hysical influences demonstrating the necessity of oblique simple structure. Psychological Bulletin, 59, 389-400.
Cattell, R. B. & Gorsuch, R. L. (1963). “The Uniqueness and Significance of Simple Structure Demonstrated by Contrasting Organic ‘Natural Structure’ and ‘Random Structure’ Data.” Psychometrika, 28, 55-67.
Cerny, B. A. & Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factoranalytic correlation matrices. The Journal of Multivariate Behavioral Research, 12, 43-47.
Chen, J. & Choi, J. (2009). A comparison of maximum likelihood and expected a posteriori estimation for polychoric correlation using Monte Carlo simulation. Journal of Modern Applied Statistical methods, 8, 337-354.
Christofferson, A. (1975). Factor analysis of dichotomous variables. Psychometrika, 40, 5-32.
Cudeck, R. & O'Dell, L. L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475-487.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299.
Finch, H. & Monahan, P. (2008). A bootstrap generalization of modified parallel analysis for IRT dimensionality assessment. Applied Measurement in Education, 21, 119-140.
Forero, C. G., Maydeu-Olivares, A. & Gallardo- Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte-Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625-641.
Gorsuch, R. L. (1983). Factor Analysis, 2nd Ed. Hillsdale, NJ: Lawrence Erlbaum.
Guilford, J. P. (1981). Higher-order structure-ofintellect abilities. Multivariate Behavioral Research, 16, 411-435.
Harman, H. H. (1976). Modern factor analysis, 3rd Ed. Chicago, IL: Chicago University Press.
Harman, H. H. & Jones, W. H. (1966). Factor analysis minimizing residuals(Minres). Psychometrika, 31, 351-368.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185.
Hu, L. & Bentler, P. M. (1999). Cutoff Criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
Humphreys, L. G. & Ilgen, D. R. (1969). Note on a criterion for the number of common factors. Educational and Psychological Measurement, 29, 571-578.
Jöreskog, K. G. & Sörbom, D. (1989). LISREL 7: A Guide to the Programs and Applications (2nd Ed.). Chicago, IL.: SPSS Inc.
Jung, S. & Lee, S. (2011). Exploratory factor analysis for small samples. Behavioral Research Methods, 43, 701-709.
Jung, S. & Takane, Y. (2008). Regularized exploratory factor analysis. In K. Shigemasu, A. Okada, T. Imaizumi, & T. Hoshino (Eds.). New trends in psychometrics (pp. 141-149). Tokyo: University Academic Press.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 34, 183-202.
Knol DL, Berger MPF. (1991). Empirical comparison between factor analysis and multidimensional item response models. Multivariate Behavioral Research, 26, 457-477.
Lee, C-T, Zhang, G., & Edwards, M. C. (2012). Ordinary least squares estimation of parameters in exploratory factor analysis with ordinal data. Multivariate Behavioral Research, 47, 314-339.
Lee, S. (2010). A review of CEFA software: Comprehensive exploratory factor analysis program.. International Journal of Testing, 10, 95-103.
Lorenzo-Seva, U & Ferrando, P. J. (2015). FACTOR 10.3. University of Rovira i Virgili, Spain.
Lorenzo-Seva, U. & Ferrando, P. J. (2015). POLYMAT-C: A comprehensive SPSS program for computing the polychoric correlation matrix. Behavioral Research Methods, 47, 884-889.
MacCallum, R. C. (2003). Working with imperfect models. Multivariate Behavioral Research, 38(1), 113-139.
McDonald, R. P. (1985). Factor analysis and ralated methods, Hillsdale, NJ: Lawerence Erlbaum.
McDonald, R. P. (2005). Semiconfirmatory factor analysis: The example of anxiety and depression. Structural Equation Modeling, 12(1), 163-172.
Millsap, R. E. & Kim, H. (In press). Factorial invariance across multiple populations in discrete and continuous data. In P. Irwing, T. Booth, & D. Hughes (Eds.), The Wiley Handbook of Psychometric Testing. London: John Wiley & Sons.
Montanelli, R. G. Jr. & Humphreys, L. G. (1976). Latent Roots of Random Data Correlation Matrices with Squared Multiple Correlation on the Diagonal: A Monte Carlo Study. Psychometrika, 41, 341-347.
Mulaik, S. A. (2010). Foundations of factor analysis, 2nd Ed. Boca Raton FL: Chapman & Hall.
Muthen, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49(1), 115-132.
Muthen, B. O. (1993). Goodness of fit with categorical and other non-normal variables. In K. A. Bollen & J. S. Long (Eds.), Testing Structural Equation Models (pp. 205-243). Newbury Park, CA: Sage.
Muthen, B. O., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Unpublished manuscript.
Muthen, L. K. and Muthen, B. O. (1998-2012). Mplus User’s Guide, 7th Ed. Los Angeles, CA: Muthen & Muthen.
O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of comonents using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402.
Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling, 7(4), 557-595.
Preacher, K. J. & MacCallum, R. C. (2003). Repairing Tom Swift’s Electric Factor Analysis machine. Understanding Statistics, 2(1), 13-43.
Rummell, R. J. (1970). Applied factor analysis. Evanston, IL: Northwestern Univ. Press.
Spearman, C. (1904). “General Intelligence,” objectively determined and measured. The American Journal of Psychology, 15(2), 201-293.
ten Berge, J. M. F. & Kiers, H. A. L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, 56, 309-315.
Thomson, G. H. (1934). Hotelling's method modified to give Spearman's g. Journal of Educational Psychology, 25, 366-374.
Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago Press.
Thurstone, L. L. (1935). The vectors of mind. Chicago: Univ. of Chicago Press.
Timmerman, M. E. & Loranzo-Seva U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220.
Vandenberg, R. J. & Lance, C. E. (2000). A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research. Organizational Research Methods, 3(1), 4-70.
Wirth, R. J. & Edwards, M. C. (2007). Items factor analysis: Current approaches and future directions. Psychological Methods, 12(1), 58-79.
Yu, C-Y (2012). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Unublished Doctoral Thesis. University of California, Los Angeles.