바로가기메뉴

본문 바로가기 주메뉴 바로가기

Korean Journal of Psychology: General

  • KOREAN
  • P-ISSN1229-067X
  • E-ISSN2734-1127
  • KCI

Psychology and Law in the Era of the Fourth Industrial Revolution: New Challenges and Problems

Korean Journal of Psychology: General / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2020, v.39 no.4, pp.481-516
https://doi.org/10.22257/kjp.2020.12.39.4.481

Abstract

The humanity stands on the brink of the fourth industrial revolution that will be characterized by a fusion of technologies that is blurring the lines between the physical, digital, and biological spheres (Schwab, 2016). Technological developments in the long run will bring about fundamental changes in the assumptions and functions of the law in respect to individuals and societies. In the short term, new technologies will assist, support, and guide people functioning in legal industries and justice systems. Further developments of the revolutionary technologies will accelerate the replacements of human works by machines, and some civil and criminal proceedings will be conducted online and by computer systems. These changes in the legal environment are expected to promote the adaptive evolution of legal psychology and forensic psychology to identify problems arising in the process of human-law interaction and seek solutions. Based on the microscopic changes that have begun to appear as recently developed technologies have already flowed into the judicial field, for example, crime prediction by artificial intelligence, etc., this review evaluated the novel challenges and problems with which legal psychology and forensic psychology will face in the near future in the areas of forensic evaluation, jury selection, scientific evidence, judicial decision-making, and crime investigation. In addition, as new technology-based crimes and issues of victim protection emerged, potential problems that should be newly addressed in research on criminals and victims were discussed.

keywords
The Fourth Industrial Revolution, Technology, Science, Legal Psychology, Forensic Psychology, Law, 제4차 산업혁명, 기술, 과학, 법심리학,

Reference

1.

Adjerid, I., & Kelley, K. (2018). Big data in psychology: A framework for research advancement. American Psychologist, 73(7), 899917. https://doi.org/10.1037/amp0000190.

2.

Alaieri, F., & Vellino, A. (2016). Ethical decision making in robots: Autonomy, trust and responsibility. Lecture Notes in Computer Science (LNAI), 9979, 159-168.

3.

Aletras, N., Tsarapatsanis, D., Preotiuc-Pietro, D., & Lampos, V. (2016). Predicting judicial decisions of the European Court of Human Rights: a Natural Language Processing perspective. PeerJ Computer Science, 2, e93. https://doi.org/10.7717/PEERJ-CS.93.

4.

American Psychological Association (2006). Evidence-based practice in psychology. American Psychologist, 61(4), 271-285. https://doi.org/10.1037/0003-066X.61.4.271.

5.

Amini, P., Ahmadinia, H., Poorolajal, J., &Moqaddasi Amiri, M. (2016). Evaluating the high risk groups for suicide: A comparison of logistic regression, Support Vector Machine, Decision Tree and Artificial Neural Network. Iranian Journal of Public Health, 45, 1179-1187.

6.

Amirian, J. (2013). Weighing the admissibility of fMRI technology under FRE 403: For the law, fMRI changes everything - and nothing. Fordham Urban Law Journal, 41, 715-770.

7.

Anastasi, A., & Urbina, S. (1997). Psychological testing (7th ed.). Prentice Hall/Pearson Education.

8.

Anumanchipalli, G. K., Chartier, J. & Chang, E. F. (2019). Speech synthesis from neural decoding of spoken sentences. Nature 568, 493-498. https://doi.org/10.1038/s41586-019-1119-1.

9.

Aspinwall, L. G., Brown, T. R., Tabery, J. (2012). The double-edged sword: does biomechanism increase or decrease judges’ sentencing of psychopaths? Science, 337, 6096, 846-849. https://doi.org/10.1126/science.1219569.

10.

Baker, L. A., Bezdjian, S., & Raine, A. (2006). Behavioral Genetics: The science of antisocial behavior. Law and Contemporary Problems, 69, 7-46 (Winter).

11.

Barnier, A. J., & McConkey, K. M. (1999). Autobiographical remembering and forgetting:what can hypnosis tell us?. The International Journal of Clinical and Experimental Hypnosis, 47(4), 346-365. https://doi.org/10.1080/00207149908410041

12.

Barrett, J. L. & Keil, F. C. (1996). Conceptualizing a nonnatural entity:Anthropomorphism in God concepts. Cognitive Psychology, 31, 219-247.

13.

Bennett, C., Miller, M., & Wolford, G. (2009). Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon:an argument for multiple comparisons correction. NeuroImage, 47, S125. https://doi.org/10.1016/s1053-8119(09)71202-9

14.

Ben-Shakhar, G., Bar-Hillel, M. & Kremnitzer, M. (2002). Trial by polygraph: Reconsidering the use of the guilty knowledge technique in court. Law and Human Behavior, 26, 527-541. https://doi.org/10.1023/A:1020204005730.

15.

Ben-Shakhar, G., & Elaad, E. (2002). Effects of questions’ repetition and variation on the efficiency of the Guilty Knowledge Test: A reexamination. Journal of Applied Psychology, 87(5), 972-977. https://doi.org/10.1037/0021-9010.87.5.972.

16.

Ben-Shakhar, G., & Elaad, E. (2003). The validity of psychophysiological detection of information with the Guilty Knowledge Test: A meta-analytic review. Journal of Applied Psychology, 88(1), 131-151. https://doi.org/10.1037/0021-9010.88.1.131.

17.

Bleidorn, W., & Hopwood, C. J. (2019). Using Machine Learning to Advance Personality Assessment and Theory. Personality and Social Psychology Review, 23(2), 190-203. https://doi.org/10.1177/1088868318772990.

18.

Brants, C. (2013). Wrongful convictions and inquisitorial process: The case of the Netherlands. Univesity of Cincinnati Law Review, 80(4), 1069-1114.

19.

Brennan, T., Dieterich, W., & Ehret, B. (2009). Evaluating the predictive validity of the Compas risk and needs assessment system. Criminal Justice and Behavior, 36(1), 21-40. https://doi.org/10.1177/0093854808326545.

20.

Brooks, K. R., Morris, T., & Thompson, P. (2011). Contrast and stimulus complexity moderate the relationship between spatial frequency and perceived speed - Implications for MT models of speed perception. Journal of Vision, 11(19), 1-10. https://doi.org/10.1167/11.14.19.

21.

Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H., & van Oost, B. A. (1993)Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262, 5133, 578-580. https://doi.org/10.1126/science.8211186.

22.

Cahill, L., & Alkire, M. (2003). Epinephrine enhancement of human memory consolidation:Interaction with arousal at encoding. Neurobiology of Learning and Memory, 79, 194-198. https://doi.org/10.1016/S1074-7427(02)00036-9.

23.

Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., Patil, P. G., Henriquez, C. S., &Nicolelis, M. A. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS biology, 1, 2, E42. https://doi.org/10.1371/journal.pbio.0000042.

24.

Caspi, A., McClay, J., Moffitt, T. E., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 5582, 851-854. https://doi.org/10.1126/science.1072290.

25.

Ceci, S. J., & Bruck, M. (1995). Jeopardy in the courtroom: A scientific analysis of children’s testimony. American Psychological Association. https://doi.org/10.1037/10180-000.

26.

Čerka, P., Grigiene, J., & Sirbikyte, G. (2015). Liability for damages caused by artificial intelligence. Computer Law & Security Review, 31, 376-389. https://doi.org/10.1016/j.clsr.2015.03.008.

27.

Chadwick, M. J., Hassabis, D., Weiskopf, N., &Maguire, E. A. (2010). Decoding individual episodic memory traces in the human hippocampus. Current Biology, 20(6), 544-547. https://doi.org/10.1016/j.cub.2010.01.053.

28.

Chapman, B. P., Weiss, A., & Duberstein, P. R. (2016). Statistical learning theory for high dimensional prediction: Application to criterion-keyed scale development. Psychological Methods, 21(4), 603-620. https://doi.org/10.1037/met0000088.

29.

Chivers-Wilson K. A. (2006). Sexual assault and posttraumatic stress disorder: a review of the biological, psychological and sociological factors and treatments. McGill Journal of Medicine: An International Forum for the Advancement of Medical Sciences by Students, 9(2), 111-118.

30.

Chung, U. D. (2020). Will trials be enlightened?:Looking into the past, the present and the future of trials through the lens of the comparison with mythology. In Yoon, J.S.,Han, S.H., Ahn, S.J. (Eds.), Law’s dilemmas, (pp 324-337). Bobmunsa. ISBN: 9788918911106(8918911106)

31.

Coldwell, D. A. L. (2019). Negative influences of the 4th Industrial Revolution on the workplace: Towards a theoretical model of entropic citizen behavior in toxic organizations. International Journal of Environmental Research and Public Health, 16, 2670. https://doi.org/10.3390/ijerph16152670.

32.

Cronbach, L. J. (1949). Essentials of psychological testing. Harper.

33.

De Angeli, A. (2009). Ethical implications of verbal disinhibition with conversational agents. Psychology Journal, 7(1), 49-57.

34.

De Angeli, A., & Brahnam, S. (2008). I hate you!Disinhibition with virtual partners. Interacting with Computers, 20(3), 302-310. https://doi.org/10.1016/j.intcom.2008.02.004.

35.

Denno, D. W. (2009). Behavioral genetics evidence in criminal cases: 1994-2007. In Nita A. Farahany (Eds.) The Impact of Behavioral Sciences on Criminal Law, pp. 317-354. Oxford University Press. Fordham Law Legal Studies Research Paper No. 1089171.

36.

Dolphin, T. (Eds, 2015). Technology, Globalisation and the Future of Work in Europe: Essays on Employment in a Digitised Economy. Institute for Public Policy Research, 45.

37.

Dombrowski, U. & Wagner, T. (2014). Mental strain as field of action in the 4th industrial revolution. Proceedings of the 47th CIRP Conference on Manufacturing Systems, 100-105.

38.

Dressel, J., & Farid, H. (2018). The accuracy, fairness, and limits of predicting recidivism. Science Advances, 4,1. https://doi.org/10.1126/sciadv.aao5580.

39.

Edmond, G., Biber, K., Kemp, R. I. & Porter, G. (2009). Law’s looking glass: Expert identification evidence derived from photographic and video images. Current Issues in Criminal Justice, 20(3), 337-377. https://doi.org/10.1080/10345329.2009.12035817.

40.

Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864-886. https://doi.org/10.1037/0033-295X.114.4.864

41.

Epley, N., Waytz, A., Akalis, S., & Cacioppo, J. T. (2008). When we need a human:Motivational determinants of anthropomorphism. Social Cognition, 26, 143- 155. https://doi.org/10.1521/soco.2008.26.2.143

42.

Europol. (2017). Serious and organized crime threat assessment. https://www.europol.europa.eu/socta /2017/.

43.

Farahany, N. A. (2012). Incriminating thoughts, Stanford Law Review, 64, 351-408.

44.

Farahany, N. A. (2016). Neuroscience and behavioral genetics in US criminal law: An empirical analysis. Journal of Law and the Biosciences, 2, 485-509. https://doi.org/10.1093/jlb/lsv059.

45.

Farahany, N. A., Greely, H. T., Hyman, S., Koch, C., Grady, C., Pașca, S. P., Sestan, N., Arlotta, P., Bernat, J. L., Ting, J., Lunshof, J. E., Iyer, E., Hyun, I., Capestany, B. H., Church, G. M., Huang, H., & Song, H. (2018). The ethics of experimenting with human brain tissue. Nature, 556, 7702, 429-432. https://doi.org/10.1038/d41586-018-04813-x.

46.

Ferguson, A. G. (2016) The big data jury. Notre Dame Law Review, 91(3), 935-1006.

47.

Fowler, T., Langley, K., Rice, F., et al. (2009). Psychopathy trait scores in adolescents with childhood ADHD: the contribution of genotypes affecting MAOA, 5HTT and COMT activity. Psychiatric Genetics, 19(6), 312-319. https://doi.org/10.1097/YPG.0b013e3283328df4.

48.

Freeman, K. (2016). Algorithmic injustice: How the Wisconsin Supreme Court failed to protect due process rights in State v. Loomis. North Carolina Journal of Law & Technology, 18, 75-106.

49.

Fuss, J. (2016). Legal responses to neuroscience. Journal of Psychiatry & Neuroscience, 41(6), 363-365. https://doi.org/10.1503/jpn.160147.

50.

Fuss, J., Dressing, H., & Briken, P. (2015). Neurogenetic evidence in the courtroom: a randomized controlled trial with German judges. Journal of Medical Genetics, 52, 730-737. https://doi.org/10.1136/jmedgenet-2015-103284

51.

Galton, F. (1878). Composite portraits. London:Harrison & Sons, St Martin’s Lane. www.galton.org.

52.

Galton, F. (1890) Criminal anthropology. Nature, 42, 75-6. www.galton.org.

53.

Ganis, G., Kosslyn, S. M., Stose, S., Thompson, W. L., & Yurgelun-Todd, D. A. (2003). Neural correlates of different types of deception: an fMRI investigation. Cerebral cortex, 13(8), 830-836. https://doi.org/10.1093/cercor/13.8.830

54.

Gazzaniga, M. S. (2008). The law and neuroscience. Neuron, 60(3), 412-415. https://doi.org/10.1016/j.neuron.2008.10.022

55.

Gershenfeld, N. & Vasseur, J. P. (2014). As objects go online: The promise (and pitfalls)of the Internet of Things. Foreign Affairs, March/April.

56.

Glenn, A. L., & Raine, A. (2014). Neurocriminology: Implications for the punishment, prediction and prevention of criminal behaviour. Nature Reviews Neuroscience, 15, 54-63. https://doi.org/10.1038/nrn3640.

57.

Gogarty, B., & Hagger, M. (2008). The laws of man over vehicles unmanned: The legal response to robotic revolution on sea, land and air. Journal of Law, Information and Science, 19, 73-145. https://doi.org/10.1525/sp.2007.54.1.23

58.

Golbeck, J., Robles, C., Edmondson, M., &Turner, K. (2011). Predicting personality from Twitter. IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) / IEEE Third International Conference on Social Computing (SocialCom), Boston, MA, 149-156. https://doi.org/10.1109/PASSAT/SocialCom.2011.33

59.

Gould, J., & Leo, R. (2010). One hundred years later: Wrongful convictions after a century of research. The Journal of Criminal Law and Criminology, 100(3), 825-868.

60.

Hallevy, G. (2010). The criminal liability of artificial intelligence entities - from science fiction to legal social control. Akron Intellectual Property Journal, 4(2), 171-201.

61.

Hannah-Moffat, K. (2019). Algorithmic risk governance: Big data analytics, race and information activism in criminal justice debates. Theoretical Criminology, 23(4), 453-470. https://doi.org/10.1177/1362480618763582.

62.

Hare, R. D. (2003). The Hare Psychopathy Checklist-Revised (2nd ed.). Toronto: Multi-Health Systems.

63.

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 7238, 632-635. https://doi.org/10.1038/nature07832.

64.

Hart, S. D. (2005). The “State of the Art” in Risk Assessment. Presentation to the International Conference on the Management and Treatment of Dangerous Offenders in York, England, 28-30 September, 2005.

65.

Hart, S. D. & Cooke, D. J. (2013). Another look at the (im-)precision of individual risk estimates made using actuarial risk assessment instruments. Behavioral Sciences and the Law, 31(1), 81-102.

66.

Haslam, N. & Loughnan, S. (2014). Dehumanization and infrahumanization. Annual Review of Psychology, 65(1), 399-423.

67.

Hoffmeister, T.A. (2012). Investigating jurors in the digital age: One click at a time. Kansas Law Review, 60, 611-648. https://doi.org/10.17161/1808.20186.

68.

Horikawa, T., Tamaki, M., Miyawaki, Y., &Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science (New York, N.Y.), 340, 6132, 639-642. https://doi.org/10.1126/science.1234330.

69.

Huth, A. G., Lee, T., Nishimoto, S., Bilenko, N. Y., Vu, A. T., & Gallant, J. L. (2016). Decoding the semantic content of natural movies from human brain activity. Frontiers in Systems Neuroscience, 10, Article 81. https://doi.org/10.3389/fnsys.2016.00081.

70.

Iliescu, D., & Greiff, S. (2019). The impact of technology on psychological testing in practice and policy: What will the future bring? European Journal of Psychological Assessment, 35(2), 151-155. https://doi.org/10.1027/1015-5759/a000532.

71.

Jakobsson, M. & Ratkiewicz, J. (2006). Designing ethical phishing experiments: a study of (ROT13) rOnl query features. In Proceedings of the 15th International Conference on World Wide Web (Edinburgh, Scotland, May 23-26). WWW ’06. ACM Press, New York, NY, 513-522. https://doi.org/10.1145/1135777.1135853.

72.

Floridi, L., Taddeo, M. & Turilli, M. (2009). Turing’s imitation game: Still an impossible challenge for all machines and some judges––An evaluation of the 2008 Loebner Contest. Minds & Machines, 19, 145-150. https://doi.org/10.1007/s11023-008-9130-6.

73.

Jones, O. D., Marois, R., Farah, M. J., & Greely, H. T. (2013). Law and Neuroscience. Journal of Neuroscience, 33(45), 17624-17630. https://doi.org/10.1523/JNEUROSCI.3254-13.

74.

Kahneman, D. & Krueger, A. B. (2006). Developments in the measurement of subjective well-being. Journal of Economic Perspectives, 20(1), 3-24. https://doi.org/10.1257/089533006776526030.

75.

Kaplan, J. (2006). Misinformation, misrepresentation, and misuse of human behavioral genetics research, Law and Contemporary Problems, 69, 47-80 (Winter).

76.

Kasabian, A. (2015). Litigating in the 21st Century: amending challenges for cause in light of big data. Pepperdine Law Review, 43, 1, 173-212.

77.

Kim, S. J. (2013). Verdict of Innocence and Judicial Fact-finding. Kyungin Publishing. ISBN: 9788949910017(8949910012)

78.

Kindt, M., Soeter, M., & Vervliet, B. (2009). Beyond extinction: erasing human fear responses and preventing the return of fear. Nature Neuroscience, 12(3), 256-258. https://doi.org/10.1038/nn.2271.

79.

King, T. C., Aggarwal, N., Taddeo, M. et al. (2020). Artificial intelligence crime: An interdisciplinary analysis of foreseeable threats and solutions. Science and Engineering Ethics, 26, 89-120. https://doi.org/10.1007/s11948-018-00081-0

80.

Kirat, D., Jang, J., & Stoecklin, M. P. (2018). DeepLocker: Concealing targeted attacks with AI locksmithing. Blackhat. IBM Research.

81.

Kovera, M. B., Dickinson, J. J., & Cutler, B. L. (2003). Voir dire and jury selection: Practical issues, research findings, and directions for future research. In A. M. Goldstein (Ed.), Handbook of psychology: Vol. 11. Forensic psychology (pp. 161-175). Wiley.

82.

Kramera, A. D. I., Guilloryb, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. PNAS, 111(24), 8788-8790.

83.

Kugler, L. (2018). AI judges and juries. Communications of the ACM, 61(12), 19-21. https://doi.org/10.1145/3283222.

84.

Laitinen, S. P. & Loynes, H. J. (2012). A new “Must Use” tool in litigation? For The Defense, August.

85.

Laney, D. (2001). 3D data management:Controlling data volume, velocity, and variety. META Group.

86.

Lee, J. W. (2019). Facial identification: A Meta-Analysis of 50 Years of Research. [Doctoral Dissertation], The City University of New York.

87.

Lee, H., & Kuhl, B. A. (2016). Reconstructing perceived and retrieved faces from activity patterns in lateral parietal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(22), 6069-6082. https://doi.org/10.1523/JNEUROSCI.4286-15.2016.

88.

Lee, M-H., Jeon, H., Sohn, J-H., Eom, J-S., (2018). Detection of Feigned Memory Impairment using Brain Oscillation and Event-related Potential. Journal of the Ergonomics Society of Korea, 37(2), 205-217. https://dx.doi.org/10.5143/JESK.2018.37.2.205.

89.

Lieberman, J. D., & Sales, B. D. (2007). Scientific jury selection. Washington, DC: American Psychological Association.

90.

Liptak, A. (2017). Sent to Prison by a Software Program’s Secret Algorithms. The New York Times (online), 1 May.

91.

Loftus, E. F. & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of the interaction between language and memory. Journal of Verbal Learning and Verbal Behavior, 13(5), 585-589.

92.

Maren S. (2011). Seeking a spotless mind:extinction, deconsolidation, and erasure of fear memory. Neuron, 70(5), 830-845. https://doi.org/10.1016/j.neuron.2011.04.023

93.

Martínez-Miranda, E., McBurney, P., & Howard, M. J. W. (2016). Learning unfair trading: A market manipulation analysis from the reinforcement learning perspective. 2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Natal, Brazil, pp. 103-109. https://doi.org/10.1109/EAIS.2016.7502499.

94.

Maslow, A. H. (1943) A theory of human motivation. Psychological Review, 50, 370-396.

95.

Matz, S. C. & Netzer, O. (2017). Using Big Data as a window into consumers’ psychology. Current Opinion in Behavioral Sciences, 18, 7-12.

96.

McCabe, D. P., Castel, A. D., & Rhodes, M. G. (2011). The influence of FMRI lie detection evidence on juror decision-making. Behavioral Sciences & the Law, 29(4), 566-577. https://doi.org/10.1002/bsl.993.

97.

Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., et al. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences of the United States of America, 103(16), 6269-6274. https://doi.org/10.1073/pnas.0511311103

98.

Mohamed, F. B., Faro, S. H., Gordon, N. J., Platek, S. M., Ahmad, H., & Williams, J. M. (2006). Brain mapping of deception and truth telling about an ecologically valid situation:functional MR imaging and polygraph investigation-initial experience. Radiology, 238(2), 679-688. https://doi.org/10.1148/radiol.2382050237

99.

Mokyr, J. (2009). Intellectual property rights, the industrial revolution, and the beginnings of modern economic growth. American Economic Review: Papers & Proceedings, 99(2), 349-355.

100.

Münsterberg, H. (1908). On the Witness Stand:Essays on Psychology and Crime. The McClure Company.

101.

Musk, E., & Neuralink (2019). An integrated brain-machine interface platform with thousands of channels. Journal of Medical Internet Research, 21(10), e16194. DOI: 10.2196/16194.

102.

Nakashima, E. (2012). Stuxnet was work of U.S. and Israeli experts, officials say. The Washington Post, 2 June.

103.

Nass, C., Moon, Y., & Green, N. (1997). Are machines gender neutral? Gender-stereotypic responses to computers with voices. Journal of Applied Social Psychology, 27, 864-876.

104.

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology, 21(19), 1641-1646. https://doi.org/10.1016/j.cub.2011.08.031

105.

Nunez, C. (2017). Artificial intelligence and legal ethics: Whether AI lawyers can make ethical decisions. Tulane Journal of Technology and Intellectual Property, 20, 189-204.

106.

Nuñez, J. M., Casey, B. J., Egner, T., Hare, T., & Hirsch, J. (2005). Intentional false responding shares neural substrates with response conflict and cognitive control. NeuroImage, 25(1), 267-277. https://doi.org/10.1016/j.neuroimage.2004.10.041

107.

Ogloff, J. R. P. (Eds., 2002). Taking Psychology and Law into the Twenty-First Century. Springer.

108.

Paller, K. A., & Kutas, M. (1992). Brain potentials during memory retrieval provide neurophysiological support for the distinction between conscious recollection and priming. Journal of Cognitive Neuroscience, 4(4), 375-391. https://doi.org/10.1162/jocn.1992.4.4.375.

109.

Pavlich, G. (2009). The subjects of criminal identification. Punishment and Society, 11(2), 171-190. https://doi.org/10.1177/1462474508101491.

110.

Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., Cahill, L., & Orr, S. P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51(2), 189-192. https://doi.org/10.1016/s0006-3223(01)01279-3.

111.

Price, H. L., Bruer, K. C., & Adkins, M. C. (2020). Using machine learning analyses to explore relations between eyewitness lineup looking behaviors and suspect guilt. Law and human behavior, 44(3), 223-237. https://doi.org/10.1037/lhb0000364.

112.

Proudfoot, D. (2011). Anthromorphism and AI -Turing’s much misunderstood imitation game. Artificial Intelligence, 175, 950-957.

113.

Qiu, L., Chan, S. H. M., & Chan, D. (2017). Big data in social and psychological science:Theoretical and methodological issues. Journal of Computational Social Science, 1(1), 59-66.

114.

Rehm, M. (2008). “She is just stupid”-Analyzing user-agent interactions in emotional game situations. Interacting with Computers, 20(3), 311-325.

115.

Rissman, J., Greely, H. T., & Wagner, A. D. (2010). Detecting individual memories through the neural decoding of memory states and past experience. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9849-9854. https://doi.org/10.1073/pnas.1001028107.

116.

Rosen, J. (2007). The Brain on the Stand- How Neuroscience is Transforming the Legal System. N.Y. TIMES, Mar. 11.

117.

Rowden, E. (2018). Distributed courts and legitimacy: What do we lose when we lose the courthouse? Law, Culture and the Humanities, 14(2), 263-281. https://doi.org/10.1177/1743872115612966.

118.

Rugg, M. D., & Yonelinas, A. P. (2003). Human recognition memory: a cognitive neuroscience perspective. Trends in Cognitive Sciences, 7(7), 313-319. https://doi.org/10.1016/s1364-6613(03)00131-1.

119.

Scherer, M. U. (2015). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29(2), 353-400. https://doi.org/10.2139/ssrn.2609777.

120.

Schwab, K. (2016). The Fourth Industrial Revolution: what it means, how to respond. World Economic Forum. January 14.

121.

Seymour, J., & Tully, P. (2018). Generative models for spear phishing posts on social media. ArXiv, abs/1802.05196.

122.

Sharkey, N., Goodman, M., & Ross, N. (2010). The coming robot crime wave. IEEE Computer Magazine, 43(8), 6-8.

123.

Simon, D. (2012). In Doubt: The Psychology of the Criminal Justice Process. Cambridge, Harvard University Press.

124.

Smethurst, A., Wilson, C., & Collins, K. (2015). The influence of fMRI lie detection evidence on jury decision making following post trial deliberations. Applied Psychology in Criminal Justice, 11(3), 147-161. https://doi.org/10.1002/bsl.993.

125.

Sourdin, T. M. (2015). Justice and technological innovation. Journal of Judicial Administration, 25(2), 96-105.

126.

Sourdin, T. (2018). Judge v robot? Artificial intelligence and judicial decision making. University of New South Wales Law Journal, 41(4), 1114-1133.

127.

Stanley, C., & Byrne, M. D. (2016). Comparing vector-based and Bayesian memory models using large-scale datasets: User-generated hashtag and tag prediction on Twitter and Stack Overflow. Psychological Methods, 21(4), 542-565. https://doi.org/10.1037/met0000098.

128.

Stupp, C. (2019). Fraudsters used AI to mimic CEO’s voice in unusual cybercrime case. The Wall Street Journal, 30 August.

129.

Surden, H. (2014). Machine learning and law. Washington Law Review, 89, 87-115.

130.

Synnott, J., Dietzel, D., & Ioannou, M. (2015). A review of the polygraph: History, methodology and current status. Crime Psychology Review, 1(1), 59-83. https://doi.org/10.1080/23744006.2015.1060080.

131.

Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697-709. https://doi.org/10.1038/nrn2889

132.

Tardif, H., Barry, R. J., & Johnstone, S. (2002). Event-related potentials reveal processing differences in honest vs malingered memory performance. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 46(2), 147-158. https://doi.org/10.1016/S0167-8760(02)00090-9

133.

Tiihonen, J., Rautiainen, M., Ollila, H. et al. (2015). Genetic background of extreme violent behavior. Molecular Psychiatry 20, 786-792. https://doi.org/10.1038/mp.2014.130.

134.

Timmons, A. C., Baucom, B. R., Han, S. C., Perrone, L., Chaspari, T., Narayanan, S. S., &Margolin, G. (2017). New frontiers in ambulatory assessment: Big Data methods for capturing couples’ emotions, vocalizations, and physiology in daily life. Social Psychological and Personality Science, 8(5), 552-563. https://doi.org/0.1177/1948550617709115.

135.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49, 433-460.

136.

Vagnini, V. L., Berry, D. T., Clark, J. A., &Jiang, Y. (2008). New measures to detect malingered neurocognitive deficit: applying reaction time and event-related potentials. Journal of clinical and experimental neuropsychology, 30(7), 766-776. https://doi.org/10.1080/13803390701754746.

137.

Vassos, E., Collier, D. A., & Fazel, S. (2014). Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular Psychiatry, 19(4), 471-477. https://doi.org/10.1038/mp.2013.31.

138.

Veletsianos, G., Scharber, C., & Doering, A. (2008). When sex, drugs, and violence enter the classroom: Conversations between adolescents and a female pedagogical agent. Interacting with Computers, 20(3), 292-301.

139.

Wang, J., Cherkassky, V. L., & Just, M. A. (2017). Predicting the brain activation pattern associated with the propositional content of a sentence. Human Brain Mapping, 38(10), 4865-4881. https://doi.org/10.1002/hbm.23692.

140.

Watson, D. (2019). The rhetoric and reality of anthropomorphism in artificial intelligence. Minds & Machines 29, 417-440. https://doi.org/10.1007/s11023-019-09506-6.

141.

Wells, G. L. (1978). Applied eyewitness-testimony research: System variables and estimator variables. Journal of Personality and Social Psychology, 36(12), 1546-1557. https://doi.org/10.1037/0022-3514.36.12.1546.

142.

Wells, G. L., Leippe, M. R. & Ostrom, T. M. (1979). Guidelines for empirically assessing the fairness of a lineup. Law and Human Behavior, 3, 285-293. https://doi.org/10.1007/BF01039807.

143.

Wells, G. L., & Quinlivan, D. S. (2009). Suggestive eyewitness identification procedures and the Supreme Court’s reliability test in light of eyewitness science: 30 years later. Law and Human Behavior, 33(1), 1-24. https://doi.org/10.1007/s10979-008-9130-3.

144.

Wells, G. L., Steblay, N. K., & Dysart, J. E. (2015). Double-blind photo lineups using actual eyewitnesses: An experimental test of a sequential versus simultaneous lineup procedure. Law and Human Behavior, 39(1), 1-14.

145.

Wells, G. L., Kovera, M. B., Douglass, A. B., Brewer, N., Meissner, C. A., & Wixted, J. T. (2020). Policy and procedure recommendations for the collection and preservation of eyewitness identification evidence. Law and Human Behavior, 44(1), 3-36. https://doi.org/10.1037/lhb0000359.

146.

West, E. M. (2010). Court findings of ineffective assistance of counsel claims in post-conviction appeal among the first 255 DNA exoneration cases. Innocence Project IAC Report.

147.

Wollert, R. (2006). Low Base Rates Limit Certainty When Current Actuarials Are Used to Identify Sexually Violent Predators: An Application of Bayes’ Theorem. Psychology, Public Policy, and Law, 12, 56-85.

148.

Woodruff, W. A. (2014). Evidence of lies and rules of evidence: The admissibility of fMRI-based expert opinion of witness truthfulness. North Carolina Journal of Law &Technology, 16(1), 105-252.

149.

Yang, M., Wong, S. C., & Coid, J. (2010). The efficacy of violence prediction: a meta-analytic comparison of nine risk assessment tools. Psychological bulletin, 136(5), 740-767. https://doi.org/10.1037/a0020473

150.

Zander, T. O., & Kothe, C. (2011). Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. Journal of Neural Engineering, 8(2), 025005. https://doi.org/10.1088/1741-2560/8/2/025005.

Korean Journal of Psychology: General