바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

기저 코티솔 수준에 따른해마의 기능적 비대칭성

Basal cortisol level and functional asymmetry of the hippocampus

한국심리학회지: 일반 / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2014, v.33 no.4, pp.815-831
박혜연 (서울대학교 심리학과)
최진영 (서울대학교)
김상은 (서울대학교)
  • 다운로드 수
  • 조회수

초록

심한 스트레스나 만성적인 스트레스는 대뇌의 구조 및 기능에 부정적인 영향을 미친다. 특히 해마는 스트레스로 인해 축소되고 기능이 저하되는 영역으로 알려졌는데, 대뇌 스트레스 반응의 좌우 비대칭성이나 해마 코티솔 수용체의 좌우 비대칭적 분포를 고려하면 스트레스는 해마의 좌우 비대칭성 역시 변화시킬 것으로 예상된다. 그러나 스트레스와 해마의 기능적 좌우 비대칭성 간의 관계는 아직 분명히 밝혀지지 않았다. 본 연구는 스트레스가 해마의 기능적 좌우 비대칭성에 미치는 영향을 알아보고자 44명의 정상 노인들을 대상으로 코티솔의 일과 중 기저 수준과 해마의 좌우 안정기 당대사율(FDG-PET 사용)을 측정했고, 기저 코티솔 측정치와 해마 당대사율의 좌우 비대칭성 간의 상관관계를 탐색했다. 또한 스트레스와 관련된 해마의 기능적 좌우 비대칭성이 인지 노화에 시사하는 바를 알아보기 위해, 안정기 해마 당대사율의 좌우 비대칭성 정도가 높은 집단과 낮은 집단 간의 인지 기능을 비교 분석했다. 연구 결과, 일과 중 기저 코티솔 변화량이 클수록 안정기 해마 당대사율의 좌우 비대칭성의 정도가 높은 것으로 나타났으며, 해마의 좌우 기능적 비대칭성의 정도가 높은 집단은 낮은 집단에 비해 K-DRS로 측정한 인지 기능이 유의하게 저조했다. 이러한 결과는 일과 중 기저 코티솔 수준의 변화가 클수록 해마의 좌우 당대사의 불균형이 초래될 가능성을 시사함과 동시에, 스트레스로 인한 해마의 기능적 좌우 비대칭성의 변화가 정상 노화 과정 중 인지 노화를 촉진시킬 가능성을 시사한다.

keywords
Stress, Hippocampus, Cortisol, Cognitive Aging, FDG-PET, 스트레스, 해마, 코티솔, 인지노화, FDG-PET

Abstract

It is well known that extreme stress or continually elevated glucocorticoid levels induce functional deficit and volume reduction in the hippocampus. However, it remains unknown whether stress induces the asymmetry of the hippocampus. To explore the effect of stress on the functional asymmetry of the hippocampus, we investigated an association between basal cortisol levels and the hippocampal asymmetry in the regional cerebral glucose metabolism in 44 right-handed normal elderly female participants (mean age 69.16 ± 4.6). Participants underwent [18F] fluorodeoxyglucose PET scanning during resting state and were assessed basal salivary cortisol levels during daytime. In order to investigate the association between stress related-hippocampal asymmetry and cognitive functions, we compared high-asymmetry group and low-asymmetry group with performance of the Korean-Dementia Rating Scale(K-DRS). We found that diurnal cortisol range was positively correlated with the degree of asymmetry of hippocampal glucose metabolic rates. Also, the K-DRS scores were lower than in the high-asymmetry group than those in the low-asymmetry group. These results suggests that stress may disrupt the bilateral balance in the hippocampal function, which may accelerate cognitive aging.

keywords
Stress, Hippocampus, Cortisol, Cognitive Aging, FDG-PET, 스트레스, 해마, 코티솔, 인지노화, FDG-PET

참고문헌

1.

권용철, 박종한 (1989). 노인용 한국판 Mini Mental State Examination (MMSE-K)의 표준화 연구-제 1편: MMSE-K의 개발. 신경정신의학, 28(1), 125-135.

2.

최진영 (1998). 한국판 치매 평가 검사:Korean-Dementia Rating Scale. 서울:학지사.

3.

최진영 (2007). 노인 기억장애 검사. 서울: 학지사

4.

최진영, 나덕렬, 박선희, 박은희 (1998). 한국판치매 평가 검사의 타당도와 신뢰도 연구. 한국심리학회지: 임상, 17(1), 247-258.

5.

Aardal, E., Holm, A. (1995). Cortisol in saliva-reference ranges and relation to cortisol in serum. European journal of clinical chemistry and clinical biochemistry, 33, 927-932.

6.

Alavi, A.., Dann, R., Chawluk, J., Alavi, J., Kushner, M., & Reivich, M. (1986). Positron emission tomography imaging of regional cerebral glucose metabolism. Seminar in Nuclear Medicine, 16(1), 2-34.

7.

Baek, M. J., Kim, H. J., Ryu, H. J., Lee, S. H., Han, S. H., Na, H. R., Chang, Y., Chey, J. & Kim, S (2011). Aging, Neuropsychology, and Cognition, 18, 214-229.

8.

Barneoud, P., Lemoal, M., & Neveu, P. (1990). Asymmetric distribution of brain monoamines in left-handed and right-handed mice. Brain Research, 520(1-2), 317-321.

9.

Bremner, J. D., Randall, P., Scott, T. M., Bronen, R. A., Southwick, S. M., Delaney, R. C., McCarthy, G., Charney, D. S., & Innis, R. B. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. American Journal of Psychiatry, 152, 973-981.

10.

Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronden, R. A., Mazure, C., Capelli, S., McCarthy, G., Innis, R. B., Charney, D. S. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse-a preliminary report. Biological Psychiatry, 41, 23-32.

11.

Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Nazeer, A., Khan, S., Vaccarino, L. V., Soufer, R., Garg, P. K., Ng, C. K., Staib, L. H., Duncan, J. S., & Charney, D. S. (2003). MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. American Journal of Psychiatry, 160, 924-932.

12.

Chey, J., Na, D. G., Tae, W. S., Ryoo, J. W., & Hong, S. B. (2006). Medial temporal lobe volume of nondemented elderly individuals with poor cognitive functions. Neurobiology of Aging, 27, 1269-1279.

13.

De Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience, 6(6), 463-475.

14.

de Leon, M. J., McRae, T., Rusinek, H., Convit, A., de Santi, S., Tarshish, C., Golomb, J., Volkow, N., Daisley, K., Orentreich, N., & McEwen, B. (1997). Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer's disease. Journal of Clinical Endocrinology and Metabolism, 82(10), 3251-3259.

15.

de Toledo-Morrell, L., Dickerson, B., Sullivan, M., Spanovic, C., Wilson, R., & Bennett, D. (2000). Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease.. Hippocampus, 10(2), 136-142.

16.

Gurvits, T. V., Shenton, M. E., Hokama, H., Ohta, H., Lasko, N. B., Gilbertson, M. W., Orr, S. P., Kikinis, R., Jolesz, F. A., McCarley, R. W., & Pitman, P. K. (1996). Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biological Psychiatry, 40, 1091-1099.

17.

Hedges, D. W., Allen, S., Tate, D. F., Thatcher, G. W., Miller, M. J., Rice, S. A., Cleaving, H. B., Sood, S., Bigler, E. D., & Pitman, R. K. (2003). Reduced hippocampal volume in alcohol and substance naive Vietnam combat veterans with posttraumatic stress disorder. Cognitive and Behavioral Neurology, 16, 219-224.

18.

Hirnstein, M., Leask, S., Rose, J., & Hausmann, M. (2010). Disentangling the relationship between hemispheric asymmetry and cognitive performance. Brain and Cognition, 73(2), 119-127.

19.

Kahn, J, Rubinow, D. R., Davis, C. L., Kling, M, & Post, R. M. (1988). Salivary cortisol: a practical method for evaluation of adrenal function. Biological Psychiatry, 23, 335-349.

20.

Kirschbaum, C. & Hellhammer, D. H. (1989). Salivary cortisol in psychological research: an overview. Neuropsychology, 22(3), 150-169.

21.

Lavenex, P., & Amaral, D. (2000). Hippocampalneocortical interaction: A hierarchy of associativity. Hippocampus, 10(4), 420-430.

22.

Lightman, S. L. (2008). The neuroendocrinology of stress: A never ending story. Journal of Neuroendocrinology, 20, 880-884.

23.

Lindauer, R. J., Vlieger, E. J., Jalink, M., Olff, M., Carlier, I. V., Majoie, C. B., den Meeten, G. J., & Gersons, B. P., (2004). Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biological Psychiatry, 56, 356-363.

24.

Lupien, S., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P., McEwen, B. S., Hauger, R. I., & Meaney, M. J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1, 69-73.

25.

Mattis, S. (1988). Dementia Rating Scale (DRS):Professional Manual. Odessa, FL: Psychological Assemssment Resources.

26.

McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171-179.

27.

McEwen, B. S., & Magarinos, A. M. (1997). Stress effects on morphology and function of the hippocampus. Annals of the New York Academy of Sciences, 821, 271-284.

28.

Miller, D. B., & O'Callaghan, J. P. (2005). Aging, stress and the hippocampus. Ageing Research Reviews, 4, 123-140.

29.

Morcom, A. M., Fletchera, P. C. (2004). Does the brain have a baseline? Why we should be resisting a rest. NeuroImage, 25, 616-624..

30.

Nakano, T., Wenner, M., Inagaki, M., Kugaya, A., Akechi, T., Matsuoka, Y., Sugahara, Y., Imoto, S., Murakami, K., & Uchitomo, Y. (2002). Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. American Journal of Psychiatry, 159, 2087-2093.

31.

Neveu, P. J., Liège, S., & Sarrieau, A. (1998). Asymmetrical distribution of hippocampal mineralocorticoid receptors depends on lateralization in mice. Neurobimmunmodulation, 5(1-2), 16-21.

32.

O'connor, T., O'halloran, D., & Shanahan, F. (2000). The stress response and the hypothalamic‐pituitary‐adrenal axis: from molecule to melancholia. Qjm, 93(6), 323-333.

33.

Raff, H. (2000). Salivary cortisol: a useful measurment in the diagnosis of Cushings syndrome and the evaluation of the hypothalamic-pituitary-adrenal axsis. Endocrinoligist, 10, 9-17.

34.

Rolls, E. (2000). Hippocampo-cortical and cortico-cortical backprojections. Hippocamous, 10(4), 380-388.

35.

Sapolsky, R. M. (1992). Stress, the aging brain, and the mechanism of neuron death. Cambridge, MA:MIT Press.

36.

Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273(5276), 749-750.

37.

Savla, T., Almeida, D. M. (2008). Daily stress, affect and fluctuations in pain symptoms and cortisol rhythm, gerotologist (p394), Gerotological society of America, National Harbor, MD

38.

Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annual Review of Clinical Psychology, 1, 607.

39.

Selye, H. (1976). Stress in health and disease:Butterworths Boston.

40.

Smith, M. E. (2005). Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus, 15, 798-807.

41.

Starkman, M. N., Gebarski, S. S., Berent, S., & Schteingart, D. E. (1992). Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing's syndrome. Biological Psychiatry, 32, 756-765.

42.

Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G., & McCarty, B. (1997). Hippocampal volume in women victimized by childhood sexual abuse. Psychological Medicine, 27, 951-959.

43.

Tang, A., & Zou, B. (2002). Neonatal exposure to novelty enhanced long-term potentiation in CA1 region of the rat hippocampus. Hippocampus, 13, 398-404.

44.

Tang, A. (2004). A hippocampal theory of cerebral lateralization. In Hugdahl, K. & Davidson, R. J. (Eds.), The asymmetric brain (pp.37-68). Cambridge, MA: MIT Press.

45.

Tierry, A., Gioanni, Y., Degenetais, E., & Glowinski, J. (2000). Hippocampo-prefrontal cortex pathway: Anatomical and electrophysiological characteristics. Hippocampusm, 10(4), 411-419.

46.

Tzourio-Mazoyer, Landeau, Crivello, Etard, Delcroix, Mazoyer, & Joilet (2002). Automated Anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273-289.

47.

Villarreal, G., Hamilton, D. A., Petropoulos, H., Driscoll, I., Rowland, L. M., Griego, J. A., Kodituwakku, P. W., Hart, B. L., Escalona, R., & Brooks, W. M. (2002). Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biological Psychiatry, 52, 119-125.

48.

Waltman, C., Blackman, M. R., Chrousos, G. P., Reimann, C & Harman, S. M. (1991). Spontaneous and glucocorticoid-inhibited adrenocorticotropic hormone and cortisol secretion are similar in healthy young and old men. Journal of Clinical Endocrinology and Metabolism, 73, 495-502.

49.

Whelan, T. B., Schteingart, D. E., Starkman, M. N., & Smith, A. (1980). Neuropsychological deficits in Cushing's syndrome. Journal of Nervous and Mental Disease, 168, 753-757.

50.

Wignall, E. L., Dickson, J. M., Vaughan, P., Farrow, T. F., Wilkinson, I. D., Hunter, M. D., & Woodruff, P. W. (2004). Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biological Psychiatry, 56, 832-836.

51.

Winter, H., & Irle, E. (2004). Hippocampal volume in adult burn patients with and without posttraumatic stress disorder. American Journal of Psychiatry, 161, 2194-2200.

52.

Wittling, W. (1995). Brain asymmetry in the control of autonomic-physiologic activity. In R. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 305-357). Cambridge, MA: MIT Press.

53.

Wittling, W., & Pfluger, M. (1990). Neuroendocrine hemisphere asymmetries:Salivary cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain and Cognition, 14(2), 243-265.

한국심리학회지: 일반