바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • ENGLISH
  • P-ISSN1229-067X
  • E-ISSN2734-1127
  • KCI

요인 개수 결정을 위한 평행분석의 정확성 평가

Evaluating the Accuracy of Parallel Analysis for Determining the Number of Common Factors

한국심리학회지: 일반 / Korean Journal of Psychology: General, (P)1229-067X; (E)2734-1127
2017, v.36 no.4, pp.441-475
https://doi.org/10.22257/kjp.2017.09.36.3.441
임상돈 (성균관대학교 심리학과)
장승민 (성균관대학교)

초록

평행분석은 표본 자료의 고윳값과 무선 자료의 고윳값을 비교하여 요인의 개수를 추정하는 방법이다. 이 방법은 고윳값에 근거하여 요인의 개수를 추정하는 다른 절차들(카이저 방법, 스크리 검사)보다 이론적으로 더 타당한 근거를 갖고 있고 경험적으로도 요인의 개수를 더 정확히 추정하는 것으로 평가 받는다. 그러나 평행분석의 이론적 근거의 타당성에 대해서도 여러 비판이 제기되어 왔고 이에 따른 다양한 수정 절차들도 제안되었다. 또한 평행분석이 상대적으로 낮은 정확성을 나타내는 조건들에 대한 우려도 있어 왔다. 본 연구는 고윳값과 평행분석이 요인의 개수를 추정하는 데 사용될 수 있는 이론적 근거와 한계를 검토하고 이를 바탕으로 평행분석의 정확성이 낮게 나타날 수 있는 조건들을 구체화하였다. 또한 모의실험을 통해 평행분석의 정확성에 영향을 줄 수 있는 다양한 요인들의 효과를 검토하고 평행분석의 사용에 주의를 요하는 조건들을 확인하였다. 모의실험의 결과는 평행분석의 요인수 추정 정확률이 요인상관의 크기, 요인부하량의 크기, 요인의 개수, 요인당 변수의 개수에 따라 크게 영향을 받으며 정확률이 낮은 조건에서 표본크기의 영향이 매우 크다는 것을 보였다. 또한 요인부하량이 낮은 변수들로 구성된 약한 요인이 포함된 경우 요인수 추정의 정확률이 크게 낮아짐을 확인하였다. 전반적으로 상관행렬에 대한 평행분석(PA-PCA)보다 축소상관행렬에 대한 평행분석(PA-PAF)의 정확률이 높았으며 특히 요인상관이 높은 경우에는 PA-PAF가, 요인상관이 낮은 경우에는 PA-PCA가 높은 정확률을 보이는 경향이 확인되었다. 마지막으로 모의실험의 결과를 기초로 요인상관의 크기, 요인부하량의 크기, 요인의 개수의 조합으로 구성되는 다양한 조건에서 평행분석이 90% 이상의 정확률을 제공하기 위해 요구되는 표본크기를 제안하였다.

keywords
parallel analysis, number of factors, eigenvalues, reduced correlation matrix, sample size, 평행분석, 요인의 개수, 고윳값, 축소상관행렬, 표본크기

Abstract

Parallel analysis is a method of estimating the number of factors by comparing the eigenvalues ​​of sample data with the eigenvalues ​​of random data. This method is considered to be theoretically more valid and empirically more accurate in estimating the number of factors than other methods, such as Kaiser method and scree test, that estimate the number of factors based on the eigenvalues. However, several criticisms have been raised about the validity of the rationale for parallel analysis and various modifications have been proposed. There have also been concerns about the conditions under which parallel analysis shows relatively low accuracy. The current study examined the rationale and limitations of the use of eigenvalues ​​and parallel analysis to estimate the number of factors, and based on this, we specified the conditions under which the accuracy of parallel analysis may be low. We also examined, through a simulation, the effects of various factors that may affect the accuracy of parallel analysis and confirmed the conditions where cautions are needed when applying parallel analysis. The results of the simulation show that the accuracy of estimating the number of factors in the parallel analysis is greatly influenced by the size of factor correlations, the magnitude of factor loadings, the number of factors, and the number of variables per factor. In addition, we confirmed that the accuracy of the parallel analysis is significantly lower when a factor model includes a weak factor with low factor loadings. Overall, the accuracy of the parallel analysis for the reduced correlation matrix (PA-PAF) was higher than the parallel analysis for the correlation matrix (PA-PCA), which in particular, PA-PAF showed high accuracy when factor correlations were high, and PA-PCA showed high accuracy when factor correlations were low. Based on the results of the simulation analyses, we proposed sample sizes required for parallel analysis to provide accuracy of 90% or higher under conditions with different levels of factor correlation, factor loading, and the number of factors.

keywords
parallel analysis, number of factors, eigenvalues, reduced correlation matrix, sample size, 평행분석, 요인의 개수, 고윳값, 축소상관행렬, 표본크기

참고문헌

1.

이순묵, 윤창영, 이민형, 정선호 (2016). 탐색적요인분석: 어떻게 달라지나? 한국심리학회지: 일반, 35(1), 217-255.

2.

장승민 (2015). 리커트 척도개발을 위한 탐색적 요인분석의 활용, 한국심리학회지: 임상, 34(4), 1079-1100.

3.

Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, Statistical Section, 3, 77-85.

4.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238.

5.

Buja, A., & Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27(4), 509-540.

6.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276.

7.

Cochran, W. G. (1940). The analysis of variances when experimental errors follow the Poisson or binomial laws. The Annals of Mathematical Statistics, 11, 335-347.

8.

Cohen. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:Erlbaum.

9.

Crawford, A. V., Green, S. B., Levy, R., Lo, W. J., Scott, L., Svetina, D., & Thompson, M. S.(2010). Evaluation of parallel analysis methods for determining the number of factors. Educational and Psychological Measurement, 70(6), 885-901.

10.

Dinno, A. (2009). Exploring the sensitivity of Horn's parallel analysis to the distributional form of random data. Multivariate Behavioral Research, 44(3), 362-388.

11.

Fabrigar, L. R., Wegener, D. T., MacCallum, R.C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299.

12.

Fava, J. L., & Velicer, W. F. (1992). The effects of overextraction on factor and component analysis. Multivariate Behavioral Research, 27(3), 387-415.

13.

Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7(3), 286.

14.

Glorfeld, L. W. (1995). An improvement on Horn’s parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55, 377-393.

15.

Green, S. B., Levy, R., Thompson, M. S., Lu, M., & Lo, W.-J. (2012). A proposed solution to the problem with using completely random data to assess the number of factors with parallel analysis. Educational and Psychological Measurement, 72, 357-374.

16.

Green, S. B., Thompson, M. S., Levy, R., & Lo, W.-J. (2014). Type I and II error rates and overall accuracy of the revised parallel analysis method for determining the number of factors. Educational and Psychological Measurement, 73, 428-457.

17.

Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19, 149-161.

18.

Hayton, J. C., Allen, D. G., & Scarpello, V.(2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191-205.

19.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185.

20.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55

21.

Humphreys, L. G., & Ilgen, D. R. (1969). Note on a criterion for the number of common factors. Educational and Psychological Measurement, 29(3), 571-578.

22.

Jaeger, T. F. (2008). Categorical data analysis:Away from ANOVAs (transformation or not)and towards logit mixed models, Journal of Memory and Language, 59(4), 434-446.

23.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141-151.

24.

MacCallum, R. C., Browne, M., & Sugawara, H.,(1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130-149.

25.

MacCallum, R. C., Widaman, K. F., & Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84-99.

26.

Mulaik, S. A. (2010). Foundations of factor analysis (2nd ed.). Boca Raton, FL: Cahpman & Hall.

27.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York:McGraw-Hill.

28.

O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instrumentation, and Computers, 32, 396-402.

29.

Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swifts’s electric factor analysis machine. Understanding Statistics, 2(1), 13-43.

30.

Preacher, K. J., Zhang, G., Kim, C., & Mels, G.(2013). Choosing the optimal number of factors in exploratory factor analysis: A model selection perspective. Multivariate Behavioral Research, 48(1), 28-56.

31.

R Core Team (2017). R: A Language And Environment For Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

32.

Reise, S. P., Waller, N. G., & Comrey, A. L.(2000). Factor analysis and scale revision. Psychological Assessment, 12, 287-297.

33.

Steiger, J. H., & Lind, J. C. (1980, May). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.

34.

Timmerman, M. E. & Lorenzo-Seva U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220.

35.

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1-10.

36.

Turner, N. E. (1998). The effect of common variance and structure pattern on random data eigenvalues: Implications for the accuracy of parallel analysis. Educational and Psychological Measurement, 58(4), 541-568.

37.

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321-327.

38.

Velicer, W. F., Eaton, C. A., & Fava, J. L.(2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. In E. Helmes (Ed.), Problems and solutions in human assessment: Honoring Douglas N. Jackson at seventy. (pp. 41-71). New York, NY: Kluwer Academic/Plenum.

39.

Zwick, W. R. & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432-442.

한국심리학회지: 일반