바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

시각작업기억과 지각입력 간 비교 처리 과정에서의 선별적 변화 탐지의 특성

The Nature of Selective Process during The Comparison between Visual Working Memory and Perceptual Inputs

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2009, v.21 no.3, pp.147-166
https://doi.org/10.22172/cogbio.2009.21.3.001
현주석 (중앙대학교)

초록

시각작업기억과 유입되는 지각정보와의 비교 처리는 매우 신속하고 즉각적임이 알려져 있다(Hyun, Woodman, Vogel, Niese, & Luck, 2003). 본 연구는 피험자에게 개체들의 특정 세부특징 차원에서 발생하는 변화를 탐지하도록 하고, 다른 무시된(ignored) 즉, 과제 무관련 세부특징 차원에서 변화를 유발시켜 무관련 변화가 탐지될 수 있는가를 검사하였다. 무관련 세부특징 탐지 여부를 알아보기 위해 표적 탐지에 따른 주의 전환과 동시에 나타나는 사건관련전위인 N2pc(N2 post contralateral component)를 측정하였다. 그 결과 무관련 차원에서의 변화는 변화가 탐지된 위치로 주의 전환을 유발시키지 않는 것으로 나타났다. 그러나 무관련 차원에서 발생하는 변화의 개수를 한 개에서 네 개로 증가시켰을 경우 피험자는 변화가 한 개였던 경우에 비해 무관련 차원의 변화들에 의해 과제수행에 좀 더 방해를 받은 것으로 나타났다. 이 결과는 시각작업기억 표상과 유입되는 지각적 표상간의 비교는 매우 신속하고 무한용량 처리 과정인 동시에 필요한 경우, 통제적 처리 기제에 의해 선별적으로 수행될 수 있음을 의미한다.

keywords
시각작업기억, 비교, 변화탐지, N2pc, 통제적 처리, visual working memory, comparison, change detection, N2pc, controlled process, visual working memory, comparison, change detection, N2pc, controlled process

Abstract

Comparison between visual working memory (VWM) representation and incoming perception has been reported to be rapid and immediate (Hyun, Woodman, Vogel, Niese, & Luck, 2003). The present study further tested if a visual change in an ignored or in other words, a task‐irrelevant feature dimension would be detected while a relevant feature dimension is paid attention for change‐detection. Electrophysiological index of change‐induced shift of attention (e.g., N2pc) indicated that the irrelevant change does not appear triggering the shift of attention to a location of the change. When increased the number of changes however, subjects were more distracted than when there was only a single change. The results indicate that comparison between solid VWM representation and incoming perception occurs in an automatic fashion but can operate selectively in a controlled manner if necessary.

keywords
시각작업기억, 비교, 변화탐지, N2pc, 통제적 처리, visual working memory, comparison, change detection, N2pc, controlled process, visual working memory, comparison, change detection, N2pc, controlled process

참고문헌

1.

현주석 (2008a). 시각적 탐색에서 표적에 의해 유발된 N2pc 성분의 특성 및 측정. 한국심리학회지: 실험, 20(4), 247-263.

2.

현주석 (2008b). 차폐 자극이 시각 작업 기억 비교 과정에 미치는 영향. 한국심리학회지: 실험, 20(3), 167-178.

3.

현주석, 정상철, 정찬섭 (1998). 선분 운동 착시를 통해 본 주의 효과의 공간적 패턴. 인지과학, 9(4), 107-120.

4.

Bamber, D. E. (1969a). Reaction times and error rates for “same”‐“different” judgments of multidimensional stimuli. Perception & Psychophysics, 6(3), 169‐174.

5.

Bamber, D. E. (1969b). “Same”‐“different” judgments of multidimensional stimuli: Reaction times and error rates. Dissertation Abstracts International, 30(4‐B).

6.

Bamber, D. E. (1972). Reaction times and error rates for judging nominal identity of letter strings. Perception & Psychophysics. Vol., 12(4), 321‐326.

7.

Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501-517.

8.

Egeth, H. (1966). Parallel versus serial processing in multidimensional stimulus discrimination. Perception and Psychophysics, 1, 245-252.

9.

Folk, C. L., & Annett, S. (1994). Do locally defined feature discontinuities capture attention? Perception and Psychophysics, 56(3), 277-287.

10.

Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 317-329.

11.

Hyun, J.‐S., Hollingworth, A., & Luck, S. J. (2006). How change‐detection is related to visual search: A change in a remembered object is like a simple feature. [Abstract]. Journal of Vision, 6(6), 985a.

12.

Hyun, J.‐S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (in press). The comparison process of visual working memory representations with perceptual inputs. Journal of Experimental Psychology.

13.

Hyun, J.‐S., Woodman, G. F., Vogel, E. K., Niese, A. T., & Luck, S. J. (2003). How are visual inputs compared with memory representations in the change‐detection paradigm? [Abstract]. Journal of Vision, 3(9), 322a.

14.

Jennings, J. R., & Wood, C. C. (1976). The e-adjustment procedure for repeated‐measures analyses of variance. Psychophysiology, 13, 277-278.

15.

Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476-490.

16.

Luck, S. J. (2005a). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.

17.

Luck, S. J., & Ford, M. A. (1998). On the role of selective attention in visual perception. Proceedings of the National Academy of Sciences, U.S.A., 95, 825‐830.

18.

Luck, S. J., & Girelli, M. (1998). Electrophysiological approaches to the study of selective attention in the human brain. In R. Parasuraman (Ed.), The Attentive Brain (pp.71-94). Cambridge, MA: MIT Press.

19.

Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64‐87.

20.

Luck, S. J., & Hillyard, S. A. (1990). Electrophysiological evidence for parallel and serial processing during visual search. Perception and Psychophysics, 48, 603-617.

21.

Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291-308.

22.

Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000-1014.

23.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

24.

Mueller, H. J., & Humphreys, G. W. (1991). Luminance increment detection: Capacity -limited or not? Journal of Experimental Psychology: Human Perception and Performance, 17, 107-124.

25.

Mueller, H. J., & Rabbit, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315-330.

26.

Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29, 1631-1647.

27.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing. I: Detection, search and attention. Psychology Review, 84, 1-66.

28.

Sekuler, R. W., & Abrams, M. (1968). Visual sameness: A choice time analysis of pattern recognition processes. Journal of Experimental Psychology, 77, 232-238.

29.

Treisman, A. (1986). Features and objects in visual processing. Scientific American, 255(5), 114B- 125.

30.

Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 40, 201-237.

31.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92-114.

32.

Wolfe, J. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202-238.

33.

Wolfe, J., Klempen, N., & Dahlen, K. (2000). Postattentive vision. 2000. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 693-716.

34.

Wolfe, J. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202-238.

35.

Wolfe, J., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419-433.

36.

Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867-869.

37.

Woodman, G. F., & Luck, S. J. (2003a). Dissociations among attention, perception, and awareness during object‐substitution masking. Psychological Science, 14, 605-111.

38.

Woodman, G. F., & Luck, S. J. (2003b). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121-138.

39.

Xu, Y. (2006). Dissociable neural mechanisms supporting visual short‐term memory for objects. Nature, 440, 91-95.

40.

Xu, Y., & Chun, M. (2007). The role of the superior intra-parietal sulcus in supporting visual short-term memory for multifeature objects. Journal of Neuroscience, 27, 11676-11686.

41.

Yantis, S. (2000). Goal‐directed and stimulus -driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Attention & Performance XVIII (pp.73-103). Cambridge, MA: MIT Press.

42.

Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601-621.

43.

Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16, 121-134.

한국심리학회지: 인지 및 생물