ISSN : 1226-9654
환경 자극 중에는 여러 차원에서 정보가 패턴을 이루면서 나타나는 경우가 많다. 인간은 동시에 여러 차원에서 제시되는 정보 패턴을 암묵적으로 학습할 능력을 가졌지만, 어떤 경우에 어떤 정보가 학습되는지 잘 이해되지 않고 있다. 예컨대, 화면을 삼분하는 세 영역이 있고, 각 영역 안에 네 개의 국소 위치가 있는 자극판에서 자극이 순차적으로 임의의 한 곳에 제시되면, 자극의 제시 위치는 영역 위치와 (각 영역 내) 국소 위치의 두 개 차원에서 조작된다. 이때 영역 차원과 국소 차원간의 독특성(distinctiveness)이 자극 제시 위치의 순서 학습에 어떤 영향을 미치는지를 본 연구는 살펴보았다. 실험 참가자는 자극의 국소 위치에 따라 반응을 했고, 자극이 속한 영역의 위치는 반응과 무관했다. 관계 반복 조건에서는 영역 및 국소 순서 계열간의 관계가 일정하게 유지되었으므로 두 계열이 통합되어 학습될 여지가 있었다. 관계 변동 조건에서는 두 순서 계열간에 일정한 관계가 유지되지 않았으나, 개별 순서 계열들이 독립적으로 학습될 여지가 있었다. 주요 결과는 다음과 같았다. 첫째, 관계 반복 조건에서는 통합 순서 학습은 일어났으나 개별 순서 학습은 일어나지 않았다. 둘째, 관계 변동 조건에서는 영역 순서가 학습되었지만 국소 순서는 학습되지 않았다. 다시 말해서 통합 순서 학습과 개별 순서 학습이 동시에 일어나지 않았으며, 개별 순서 학습도 불완전했다. 이 결과는 자극 제시 차원간의 독특성이 높았던 선행 연구에서 통합 순서 학습과 개별 순서 학습이 모두 일어난 결과와 대조되며, 본 연구 결과는 두 순서 계열이 밀접한 관계를 가진 차원상에 제시되었기 때문에 얻어졌다고 볼 수 있다. 부호화 혹은 작업 기억 활성화 과정에서 차원간의 상호작용이 일어나서 개별 순서 학습과 통합 순서 학습이 제약 받았다고 해석할 수 있다.
Humans are capable of learning sequential information from multiple stimulus dimensions simultaneously, but the factors influencing the selection of specific sequences for learning remains unclear. In order to investigate the role of cross-dimensional distinctiveness in sequence learning, in a serial reaction time task, sequences were presented on two dimensions that were very low in distinctiveness. Repeating sequences were presented in two visuospatial dimensions nested hierarchically within each other-a local spatial dimension that specified the correct response on each trial and a global spatial dimension that indicated the general display region of the stimulus. In the phase-repeat condition, the two sequences were consistently matched in phase, allowing an integrated representation of the two sequences to be formed. In the phase-change condition, the two sequences differed in length and were not correlated. In the phase-repeat condition, integrative learning was found for the cross-dimensional pattern, but individual sequence learning was not found. In the phase-change condition only the global sequence was learned, but not the local sequence. Thus, integrative and individual sequence learning did not occur simultaneously, neither was individual sequence learning complete. Furthermore, learning for individual sequences and the cross-dimensional information had an over-additive influence on performance. This pattern of results contrasts with previous research that showed simultaneous learning for both cross-dimensional and individual sequence information presented in highly distinct dimensions. The current results are attributed to the combination of the two closely related dimensions and suggest that individual and integrative sequence learning can be constrained due to interactions between indistinctive dimensions at encoding or working memory activation stages of processing.
Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Neuroscience, 4, 829-839.
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. Bower (Ed.), The psychology of learning and motivation (Vol.8, pp.47-89). NewYork: Academic Press.
Broadbent, D. E. (1977). The hidden preattentive process. American Psychologist, 32, 109-118.
Cock, J., & Meier, B. (2007). Incidental task sequence learning: Perceptual rather than conceptual? Psychological Research, 71, 140-151.
Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory & Cognition, 22, 95-110.
Jiménez, L., & Méndez, C. (1999). Which attention is needed for implicit sequence learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 236-259.
Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316-339.
Keele, S. W., Jennings, P., Jones, S., Caulton, D., Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17-30.
Kinchla, R. A., & Wolfe, J. (1979). The order of visual processing: “Top-down,” “bottom-up,” or “middle-out.” Perception and Psychophysics, 33, 1-10.
Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 350-364.
Navon, D. (1977). Forest before the trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-393.
Rah, S. K.-Y., Reber, A. S., & Hsiao, A. T. (2000). Another wrinkle on the dual-task SRT experiment: it’s probably not dual task. Psychonomic Bulletin & Review, 7, 309-313.
Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225-260.
Schmidtke, V., & Heuer, H. (1997). Task integration as a factor in secondary-task effects on sequence learning. Psychological Research, 60, 53-71.
Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 445-457.
Shin, J. C. (2008). The procedural learning of action order is independent of temporal learning. Psychological Research, 72, 376-386.
Stadler, M. A. (1993). Implicit serial learning: Questions inspired by Hebb (1961). Memory & Cognition, 21, 819-827.
Stadler, M. A. (1995). Role of attention in implicit learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 674-685.
Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory & Cognition, 27, 561-572.
Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1047- 1060.
Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory & Cognition, 28, 366-375.