성공적인 피드백 학습은 자극-반응-결과의 반복적 경험을 바탕으로 행동을 지속해서 수정(습득)하는 능력과 지연 후 학습하였던 연합을 인출(기억)하는 능력과 관련 있을 것이다. 본 연구에서는 S-R 학습과제에서 획득된 이 두 가지 측면의 개인 차이와 관련된 두뇌 해부학적 신경실질을 조사하기 위해 부피소-기반 형태분석법(voxel-based morphometry)을 사용하였다. 정상인(N=22; M/F = 4/18)의 고해상도 자기공명영상(MRI)에서 얻은 회백질 영상에 학습률과 기억률을 공변인으로 중다회귀분석을 각각 실시하였다. 그 결과, 자극-반응 쌍의 연합 습득 능력을 반영하는 학습률은 주의 통제에 관여한다고 알려진 좌측 상두정영역(superior parietal region)의 회백질의 부피와 정적 상관이 있었다. 반면, 자극-반응 연합의 성공적인 인출과 관련한 기억률이 장기기억형성에 관여한다고 알려진 우반구 후측 해마(posterior hippocampus)의 회백질 부피와 정적 상관이 있음을 발견하였다. 본 결과는 피드백을 근거로한 S-R학습의 습득 능력과 기억수행 능력의 개인차이는 서로 다른 해부학적 구조에 근거할 가능성을 시사한다.
Successful feedback learning relies on the individual's ability to consistently adjust behavior, based on repeated stimulus-response-outcome experiences, and ability to retrieve previously learned information from memory. The present study investigated the neuroanatomical bases of individual differences underlying two types of performance, acquisition and memory, during feedback based S-R learning, using voxel-based morphometry (VBM). Whole-brain structural magnetic resonance imaging (MRI, 3T) scans were obtained from healthy young subjects (N = 22: M/F = 4/18). Multiple regression analysis revealed that individual differences in learning rate were positively correlated with gray matter volume of the left superior parietal region, indicating that efficiency in acquisition may be associated with attentional control. The individual differences in memory rate were positively correlated with volume of the right posterior hippocampal region, which is known to be involved in formation of long-term memory. These results demonstrate a double dissociation between learning-acquisition and memory-performance.
김진희 (2010). 학습피드백으로서 보상과 처벌관련 두뇌 활성화 연구. 강원대학교 일반대학원 석사학위논문.
Amiez, C., Hadj-Bouziane, F., & Petrides, M. (2012). Response selection versus feedback analysis in conditional visuo-motor learning. Neuroimage, 59(4), 3723-3735.
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry--the methods. Neuroimage, 11(6 Pt 1), 805-821.
Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., & Friston, K. (1998). Identifying global anatomical differences: deformation-based morphometry. Human brain mapping, 6(5-6), 348-357.
Bartzokis, G., Beckson, M., Lu, P. H., Nuechterlein, K. H., Edwards, N., & Mintz, J. (2001). Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Archives of General Psychiatry, 58(5), 461.
Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current opinion in neurobiology, 14(2), 212-217.
Beyer, M. K., Janvin, C. C., Larsen, J. P., & Aarsland, D. (2007). A magnetic resonance imaging study of patients with Parkinson's disease with mild cognitive impairment and dementia using voxel-based morphometry. Journal of Neurology, Neurosurgery & Psychiatry, 78(3), 254-259.
Bischoff-Grethe, A., Hazeltine, E., Bergren, L., Ivry, R. B., & Grafton, S. T. (2009). The influence of feedback valence in associative learning. Neuroimage, 44(1), 243-251.
Boettiger, C. A., & D'Esposito, M. (2005). Frontal networks for learning and executing arbitrary stimulus-response associations. The Journal of Neuroscience, 25(10), 2723-2732.
Brovelli, A., Laksiri, N., Nazarian, B., Meunier, M., & Boussaoud, D. (2008). Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory. Cereb Cortex, 18(7), 1485-1495.
Bunge, S. A., Hazeltine, E., Scanlon, M. D., Rosen, A. C., & Gabrieli, J. D. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage, 17(3), 1562-1571.
Cacioppo, J. T., Berntson, G. G., & Nusbaum, H. C. (2008). Neuroimaging as a new tool in the toolbox of psychological science. Current Directions in Psychological Science, 17(2), 62-67.
Carlson, J. M., Beacher, F., Reinke, K. S., Habib, R., Harmon-Jones, E., Mujica-Parodi, L. R., et al. (2012). Nonconscious attention bias to threat is correlated with anterior cingulate cortex gray matter volume: A voxel-based morphometry result and replication. Neuroimage, 59(2), 1713-1718.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215.
Davare, M., Lemon, R., & Olivier, E. (2008). Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. The Journal of physiology, 586(11), 2735-2742.
Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci, 3(1), 27-38.
DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience. Brain structure and the big five. Psychological Science, 21(6), 820-828.
Dolk, T., Liepelt, R., Villringer, A., Prinz, W., & Ragert, P. (2012). Morphometric gray matter differences of the medial frontal cortex influence the Social Simon Effect. Neuroimage, 61(4), 1249-1254.
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 41-50.
Elliott, R., Newman, J. L., Longe, O. A., & William Deakin, J. F. (2004). Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. Neuroimage, 21(3), 984-990.
Ferreira, L. K., Diniz, B. S., Forlenza, O. V., Busatto, G. F., & Zanetti, M. V. (2011). Neurostructural predictors of Alzheimer's disease: a meta-analysis of VBM studies. Neurobiology of aging, 32(10), 1733-1741.
Foerde, K., Race, E., Verfaellie, M., & Shohamy, D. (2013). A role for the medial temporal lobe in feedback-driven learning: evidence from amnesia. The Journal of Neuroscience, 33(13), 5698-5704.
Friston, K. J., Holmes, A. P., Price, C. J., Buchel, C., & Worsley, K. J. (1999). Multisubject fMRI studies and conjunction analyses. Neuroimage, 10(4), 385-396.
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240-9245.
Gilaie-Dotan, S., Kanai, R., & Rees, G. (2011). Anatomy of human sensory cortices reflects inter-individual variability in time estimation. Front Integr Neurosci, 5, 76.
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174-8179.
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14(1 Pt 1), 21-36.
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253-258.
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. Neuroimage, 23(1), 425-433.
Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Nystrom, L., Mars, R. B., Coles, M. G., et al. (2004). Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nat Neurosci, 7(5), 497-498.
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of comparative Neurology, 387(2), 167-178.
Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in neurosciences, 18(7), 314-320.
Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci, 12(4), 231-242.
Kirchhoff, B. A., & Buckner, R. L. (2006). Functional-anatomic correlates of individual differences in memory. Neuron, 51(2), 263-274.
Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 1399-1402.
Kosslyn, S. M., Cacioppo, J. T., Davidson, R. J., Hugdahl, K., Lovallo, W. R., Spiegel, D., et al. (2002). Bridging psychology and biology. American Psychologist, 57(5), 341-351.
Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. (1989). Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations. Journal of experimental psychology: human perception and performance, 15(4), 723.
Kubicki, M., Shenton, M., Salisbury, D., Hirayasu, Y., Kasai, K., Kikinis, R., et al. (2002). Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage, 17(4), 1711-1719.
Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., et al. (2001). Diffusion tensor imaging: concepts and applications. Journal of magnetic resonance imaging, 13(4), 534-546.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403.
McAlonan, G. M., Cheung, V., Cheung, C., Suckling, J., Lam, G. Y., Tai, K., et al. (2005). Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain, 128(2), 268-276.
Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: methods and applications. Current Medical Imaging Reviews, 1(2), 105-113.
Miller, M. B., Donovan, C.-L., Bennett, C. M., Aminoff, E. M., & Mayer, R. E. (2012). Individual differences in cognitive style and strategy predict similarities in the patterns of brain activity between individuals. Neuroimage, 59(1), 83-93.
O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304 (5669), 452-454.
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in cognitive sciences, 9(2), 60-68.
Poldrack, R. A., Prabhakaran, V., Seger, C. A., & Gabrieli, J. D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13(4), 564.
Poppenk, J., & Moscovitch, M. (2011). A hippocampal marker of recollection memory ability among healthy young adults: contributions of posterior and anterior segments. Neuron, 72(6), 931-937.
Rushworth, M. F., Paus, T., & Sipila, P. K. (2001). Attention systems and the organization of the human parietal cortex. The Journal of Neuroscience, 21(14), 5262-5271.
Sakai, H., Takahara, M., Honjo, N. F., Doi, S., Sadato, N., & Uchiyama, Y. (2012). Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults. PLoS One, 7(9), e45920.
Santesso, D. L., Dillon, D. G., Birk, J. L., Holmes, A. J., Goetz, E., Bogdan, R., et al. (2008). Individual differences in reinforcement learning: behavioral, electrophysiological, and neuroimaging correlates. Neuroimage, 42(2), 807-816.
Schmidt-Wilcke, T., Poljansky, S., Hierlmeier, S., Hausner, J., & Ibach, B. (2009). Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls--a voxel based morphometry study. Neuroimage, 47(4), 1914-1920.
Schonberg, T., Daw, N. D., Joel, D., & O'Doherty, J. P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. The Journal of Neuroscience, 27(47), 12860-12867.
Schubotz, R. I., & Von Cramon, D. Y. (2004). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. The Journal of Neuroscience, 24(24), 5467-5474.
Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. The Journal of Neuroscience, 25(11), 2941-2951.
Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological review, 99(2), 195.
Takahashi, R., Ishii, K., Kakigi, T., & Yokoyama, K. (2011). Gender and age differences in normal adult human brain: Voxel-based morphometric study. Human brain mapping, 32(7), 1050-1058.
Thorndike, E. L. (1933). A Proof of the Law of Effect. Science, 77(1989), 173-175.
Tisserand, D. J., van Boxtel, M. P., Pruessner, J. C., Hofman, P., Evans, A. C., & Jolles, J. (2004). A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cerebral cortex, 14(9), 966-973.
Toni, I., Rushworth, M. F., & Passingham, R. E. (2001). Neural correlates of visuomotor associations. Experimental brain research, 141(3), 359-369.
Ullsperger, M., & von Cramon, D. Y. (2003). Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. The Journal of Neuroscience, 23(10), 4308-4314.
Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory. Neurobiol Learn Mem, 91(2), 139-154.
Vink, M., Pas, P., Bijleveld, E., Custers, R., & Gladwin, T. E. (2013). Ventral striatum is related to within-subject learning performance. Neuroscience, 250(0), 408-416.
Vogel, E. K., & Awh, E. (2008). How to Exploit Diversity for Scientific Gain Using Individual Differences to Constrain Cognitive Theory. Current Directions in Psychological Science, 17(2), 171-176.
Wise, S. P., & Murray, E. A. (2000). Arbitrary associations between antecedents and actions. Trends in neurosciences, 23(6), 271-276.
Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nature neuroscience, 1(6), 529-533.
Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nat Rev Neurosci, 7(6), 464-476.