바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Different perception of biological motion between the visual fields depending on stimulus exposure duration

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2015, v.27 no.4, pp.639-657
https://doi.org/10.22172/cogbio.2015.27.4.003

  • Downloaded
  • Viewed

Abstract

Several imaging studies reported that the posterior superior temporal sulcus(pSTS) involved in biological motion(BM) perception exhibited stronger activation in the right hemisphere. A recent behavioral study found that accuracy for BM perception was higher with shorter reaction time when BM was presented in the left visual field than in the right visual field, which was thought to reflect stronger activation of the right pSTS. Other previous studies, however, did not report any specific visual field superiority during BM perception tasks. The present study attempted to explain these discrepant past results by manipulating the stimulus exposure time in the discrimination task of peripherally presented BM. The results showed that BM in the left visual field was more accurately perceived with shorter reaction time when the stimulus duration was relatively short(~300ms) while the left visual field superiority disappeared when the duration became longer. Such specific superiority effect was not observed when non-BM stimuli were presented. These results suggest that the left visual field superiority depends on stimulus exposure duration and the function of the pSTS may underlie this perceptual phenomenon.

keywords
생물형 운동, 시야, 지각, 상측두구, 자극제시시간, biological motion, visual field, perception, superior temporal sulcus, stimulus exposure duration

Reference

1.

김제중 (2012). 생물형운동(Bioloical motion): 지각과정의 특징, 신경학적 기제 및 임상적 응용 가능성. 한국심리학회지: 인지 및 생물, 24(4), 357-392.

2.

Beauchamp, M. S., Lee, K. E., Haxby, J.V., & Martin, A. (2003). fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15, 991-1007.

3.

Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5, 221-225.

4.

Binkofski, F., & Buccino, G. (2006). The role of ventral premotorcortex in action execution and action understanding. Journal of Physiology- Paris, 99, 396-405.

5.

Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47-73.

6.

Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16, 3737-3744.

7.

Borod, J. C., Koff, E., & Caron, H. S. (1983). Right hemisphere specialization for expression and appreciation of emotion: A focus on the face. In E. Perecman (Eds.). Cognitive processing in the right hemisphere. New York, London: Academic Press, 83-110.

8.

Bradshaw, J. L., Nettleton, N. C., Wilson, L., & Nathan, G. (1984). A moving video window or a mask yoked to eye movements: Experiments on letters, words, and biological movement with prolonged hemifield stimulation. International Journal of Neuroscience, 25, 81-98.

9.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 443-446.

10.

Brownell, H. H., Potter, H. H., & Bihrle, A. M. (1986). Inference deficits in right brain- damaged patients. Brain and Language, 27, 310-324.

11.

Brownell, H. H., Griffin, R., Winner, H., Friedman, O., & Happé, F. (2000). Cerebral lateralization and theory of mind. In S. Baron, H., Tager-Flusberg, & D. Cohen. (Eds). Understanding other minds: Perspectives from autism and cognitive neuroscience (2nd ed.). Oxford: Oxford University Press, 311-338.

12.

Casteli, F., Happé, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception in interpretation of complex intentional movement patterns. Neuroimage, 12, 314-325.

13.

Champagne-Lavau, M., & Joanette, Y. (2009), Pragmatics, theory of mind and executive functions after a right-hemisphere lesion: Different patterns of deficits. Journal of Neurolinguistics, 22, 413-426.

14.

Christman, S., Kitterle, F. L., & Hellige, J. (1991). Hemispheric asymmetry in the processing of absolute versus relative spatial frequency. Brain and Cognition, 16(1), 62–73.

15.

Corballis, P. M. (2003). Visuospatial processing and the right-hemisphere interpreter. Brain and Cognition, 53, 171-176.

16.

Corballis, P., Funnell, M. G., & Gazzaniga, M. S. (2003). Hemispheric asymmetries for simple visual judgements in the split brain. Neuropsychologia, 40(4), 401-410.

17.

Cutting, J. E., Moore, C., & Mossison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44, 339-347.

18.

Dittrich, W. (1993). Action categories and the perception of biological motion. Perception, 22, 15-22.

19.

de Lussanet, M. H. E., Fadiga, L., Michels, L., Seitz, R. J., Kleiser, R., & Lappe, M. (2008). Interaction of visual hemifield and body view in biological motion perception. European Journal of Neuroscience, 27, 514-522.

20.

Dittrich, W. H., Troscianko, T., Lea, S. E. G., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727-738.

21.

Fox, R., & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218, 486-487.

22.

Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179-192.

23.

Gilaie-Dotan, S., Bentin, S., Harel, M., Rees, G., & Saygin, A. P. (2011). Normal form from biological motion despite impaired ventral stream function. Neuropsychologia, 49, 1033- 1043.

24.

Grèzes, J., Costes, N., & Decety, J. (1998). Top-down effect of strategy on the perception of human biological motion: a PET investigation. Cognitive Neuropsychology, 15, 553-582

25.

Grèzes, J., Fonlupt, P., Bertenthal, B., Delon- Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions? Neuroimage, 13, 775-785.

26.

Grabowska, A., Nowicka, A. (1996). Visual spatial frequency model of cerebral asymmetry: a critical surwey of behavioural and elecrophysiological studies. Psychological Bulletin, 120, 434-449.

27.

Griffin, R., Friedman, O., Ween, J., Winner, E., Happé, F., & Brownell, H. (2006). Theory of mind and the right hemisphere: Refining the scope of impairment. Laterality, 13(1), 195- 225.

28.

Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perceptionbiological motion. Vision Research, 45, 2847-2853.

29.

Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41, 1475-1482.

30.

Grossman, E. D., Donnelly, M., Price, R., Morgan, V., Pickens, D., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711-720.

31.

Grossman, E. D., Jardine, N. L., & Pyles, J. A. (2010). fMR-adaptation reveals invariant coding of biological motion on the human STS. Frontiers in Human Neuroscience, 4, 1-17.

32.

Gurnsey, R., Roddy, G., Ouhnana, M., & Troje, N. (2008). Stimulus magnification equates identification and discrimination of biological motion across the visual field. Vision Research, 48, 2827-2834.

33.

Harrington, L., Siegert, R. J., & McClure, J. (2005). Theory of mind in schizophrenia: a critical review. Cogntive Neuropsychiatry, 10, 249-286.

34.

Herrington, J. D., Nymberg, C., & Schultz, R. T. (2011). Biological motion task performance predicts superior temporal sulcus activity. Brain and Cognition, 77, 372-381.

35.

Hickok, G., Kirk, K., & Bellugi, U. (1998). Hemispheric organization of local and global-level visuospatial processes in deaf signers and its relation to sign language aphasia. Brain and Language, 65, 276-86.

36.

Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201-211.

37.

Kim, C-Y., Grossman, E. D., & Blake, R. (2013). Neural activity reflecting perceptual awareness of biologically relevant events. The Korean Journal of Cognitive and Biological Psychology, 25(2), 153-172.

38.

Kim, J. (2013). Perception of biological motion: Difference between the visual fields and comparison with non-biological motion. The Korean Journal of Cognitive and Biological Psychology, 25(1), 25-43.

39.

Kim, J. (2014). Abnormal frontal activation during the perception of biological motion in patients with schizophrenia. The Korean Journal of Cognitive and Biological Psychology, 26(4), 233-253.

40.

Kim, J., Jung, E., Lee, S-H., & Blake, R. (2015). A new technique for generating disordered point-light animations for the study of biological motion perception. Journal of Vision, 15, 13. doi:10.1167/15.11.13.

41.

Kim, J., Park, S., & Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: A behavioral and fMRI study. PLos ONE, 6: e19971.

42.

Lange, J., & Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26, 2894- 2906.

43.

Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from thier movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210-220.

44.

Mather, G., & Murdoch, L. (1994). Gender discrimination in biological mtion displays based on dynamic cues. Proceedings of the Royal Society of London. Series B, Biological. Science. 258, 273-279.

45.

Michels, L., Kleiser, R., de Lussanet, M. H. E., Seitz, R. J., & Lappe, M. (2009). Brain activity for peripheral biological motion in the poseterior superior temporal gyrus and the fusiform gyrus: Dependence on visual hemifield and view orientation. Neuroimage, 45, 151-159.

46.

Moscovitch, M. (1983). The linguistic and emotional functions of the normal right hemisphere. In E. Perecman(Eds.). Cognitve processing in the right hemisphere. New York, London: Academic Press, 57-82.

47.

Neri, P., Morrone, C., & Burr, D (1998). Seeing biological motion. Nature, 395, 894-896.

48.

Pelli, D. G. (1997). The video toolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437-442.

49.

Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23, 6819-6825.

50.

Peuskens H, Vanrie J, Verfaillie K, & Orban GA (2005) Specificity of regions processing biological motion. European Journal of Neuroscience, 21, 2864-2875.

51.

Pineda, J. A. (2008). Sensorimotor cortex as a critical componentof an ‘extended’ mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral and Brain Functions, 4,47. Doi: 10.1186/1744-9081-4-47

52.

Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in human viewing eye and mouth movements. Journal of Neuroscience, 18, 2188-2199.

53.

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.

54.

Santi, A., Servos, P., Vatikiotis-Bateson, E., Kuratate, T., & Munhall, K. (2003). Perceiving biological motion: dissociating visible speech from walking. Journal of Cognitive Neuroscience, 15, 800-809.

55.

Saxe, R. (2006) Uniquely human social cognition. Current Opinion in Neurobiology, 16, 235-239.

56.

Saxe, R., Xiao, D.-K., Kovacs, G., Perrett, D.I., & Kanwisher, N. (2004). A region of right posterior superior temporal sulcus responds to observed intentional actions. Neuropsychologia, 42, 1435-1446.

57.

Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130, 2452-2461.

58.

Schore, A. N. (1994). Affect regulation and the origin of the self. The Neurobiology of Emotional Development. Hillsdale: Lawrence Erlbaum Associates.

59.

Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143-153.

60.

Schultz, R. T., Grelotti, D. J., Klin, A., Kleinman, J., Ven der Gaag, C., Marois, R., & Skudlarski, P. (2003). The role of the fusiform face area in social cognition: Implications for the pathobiology of autism. Philosophical Transactions of Royal Society of London, Series B: Biological Sciences, 358(1430), 415-427.

61.

Sergent, J. (1982). Theoretical and methodological consequences of variations in exposure duration in visual laterality studies. Perception and Psychophysics, 31, 451-461.

62.

Sergent, J. (1983). Role of the input in visual hemispheric asymmetry. Psychological Bulletin, 93, 481-512.

63.

Thurman, S. M., Giese, M. A., & Grossman, E. D. (2010). Perceptual and computational analysis of critical features for biological motion. Journal of Vision, 10(12):15, 1-14.

64.

Tompkins, C. A. (1997). Right hemisphere communication disorders: Theory and management. San Diago, CA: Singular Publishing Group.

65.

Troje, N. F. (2002). The little difference. Fourier based synthesis of gender-specific biological motion. In M. Lappe & R. Würtz (Eds.), Dynamic perception (pp.115-120). Aka Press.

66.

Weed, E., McGregor, W., Nielsen, J. F., Roepstroff, A., & Frith, U. (2010). Theory of mind in adults with right hemisphere damage: What’s the story? Brain and Language, 113, 65-72.

67.

Wheaton, K. J., Thompson, J. C., Syngeniotis, A., Abbott, D. F., & Puce, A. (2004). Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage, 22, 277-288.

68.

Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 67-85.

The Korean Journal of Cognitive and Biological Psychology