바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Mechanisms of capacity limits: Serial bottleneck or graded resource?

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2015, v.27 no.4, pp.679-712
https://doi.org/10.22172/cogbio.2015.27.4.005

  • Downloaded
  • Viewed

Abstract

The current review examined how information is processed in the brain. Specifically, I investigated whether multiple inputs encoded into the brain are processed in a serial manner or they are processed in parallel. An extensive review of the literature regarding behavioral and neuroscientific studies revealed that whether information is processed in a serial or parallel manner depends on the stage of human information processing. Specifically, at the early, perceptual stage, multiple inputs can be processed in parallel as perceptual resource can be flexibly allocated to the inputs, whereas at the central stage, only a single input can be processed at a time. This review elucidates the cases in which serial or parallel processing is implemented in the brain, contributing to better understanding of how the capacity-limited brain hands information overload.

keywords
순차처리, 병렬처리, serial process, parallel process

Reference

1.

Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13, 507-513.

2.

Awh, E., Matsukura, M., & Serences, J. T. (2003). Top-down control over biased competition during covert spatial orienting. Journal of Experimental Psychology: Human Perception and Performance, 29, 52-63.

3.

Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834-846.

4.

Awh, E., Sgarlata, A. M., & Kliestik, J. (2005). Resolving visual interference during covert spatial orienting: online attentional control through static records of prior visual experience. Journal of Experimental Psychology: General, 134, 192-206.

5.

Brass, M., Derrfuss, J., Forstmann, B., & von Cramon, D. Y. (2005). The role of the inferior frontal junction area in cognitive control. Trends in Cognitive Sciences, 9, 314-316.

6.

Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713-726.

7.

Brisson, B., & Jolicoeur, P. (2007). Electrophysiological evidence of central interference in the control of visuospatial attention. Psychonomic Bulletin & Review, 14, 126-132.

8.

Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory. Psychological Review, 64, 205-215.

9.

Bunge, S. A., Klingberg, T., Jacobsen, R. B., & Gabrieli, J. D. (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy Sciences of the United States of America, 97, 3573-3578.

10.

Buschman, T. J., & Miller, E. K. (2009). Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron, 63, 386-396.

11.

Carrasco, M., Penpeci-Talgar, C., & Eckstein, M. (2000). Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Research, 40, 1203-1215.

12.

Carrasco, M., Williams, P. E., & Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement [Electronic Version]. Journal of Vision, 2, 467-479.

13.

Carrasco, M., & Yeshurun, Y. (1998). The contribution of covert attention to the set-size and eccentricity effects in visual search. Journal of Experimental Psychology: Human Perception and Performance, 24, 673-692.

14.

Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9, 349-354.

15.

Chelazzi, L. (1999). Serial attention mechanisms in visual search: A critical look at the evidence. Psychological Research, 62, 195-219.

16.

Chiu, Y. C., & Yantis, S. (2009). A domain-independent source of cognitive control for task sets: shifting spatial attention and switching categorization rules. Journal of Neuroscience, 29, 3930-3938.

17.

Cho, Y. S., Lien, M. C., & Proctor, R. W. (2006). Stroop dilution depends on the nature of the color carrier but not on its location. Journal of Experimental Psychology: Human Perception and Performance, 32, 826-839.

18.

Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109-127.

19.

Culham, J. C., Cavanagh, P., & Kanwisher, N. G. (2001). Attention response functions: characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32, 737-745.

20.

Di Lollo, V., Kawahara, J. -I., Ghorashi, S. M. S., & Enns, J. T. (2005). The attentional blink: Resource depletion or temporary loss of control? Psychological Research, 69, 191-200.

21.

Dosher, B. A., & Lu, Z. L. (2000). Noise exclusion in spatial attention. Psychological Science, 11, 139-146.

22.

Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Review Neuroscience, 2, 820-829.

23.

Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458.

24.

Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neuroscience, 23, 475-483.

25.

Dux, P. E., Asplund, C. L., & Marois, R. (2008). An attentional blink for sequentially presented targets: Evidence in favor of resource depletion accounts. Psychonomic Bulletin & Review, 15, 809-813.

26.

Dux, P. E., Asplund, C. L., & Marois, R. (2009). Both exogenous and endogenous target salience manipulations support resource depletion accounts of the attentional blink: A reply to Olivers, Spalek, Kawahara & Di Lollo. Psychonomic Bulletin & Review, 16, 219-224.

27.

Dux, P. E., Ivanoff, J., Asplund, C. L., & Marois, R. (2006). Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron, 52, 1109-1120.

28.

Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, & Psychophysics, 71, 1683-1700.

29.

Dux, P. E., Tombu, M., Harrison, S., Rogers, B. P., Tong, F., & Marois, R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron, 63, 127-138.

30.

Engle, R. W., Conway, A. R. A., Tuholski, S. W., & Shisler, R. J. (1995). A resource account of inhibition. Psychological Science, 6, 122-125.

31.

Fagot, C., & Pashler, H. (1992). Making two responses to a single object: implications for the central attentional bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 18, 1058-1079.

32.

Fougnie, D., & Marois, R. (2006). Distinct capacity limits for attention and working memory: Evidence from attentive tracking and visual working memory paradigms. Psychological Science, 17, 526-534.

33.

Goebel, R., Roebroeck, A., Kim, D. S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging, 21, 1251-1261.

34.

Han, S. W. (2015). Distinct load effects by set-size and target-distractor similarity in visual search. 한국심리학회지: 인지 및 생물, 27(3), 505-518.

35.

Han, S. W., & Jung, W. H. (2015). Your own face is no more precious than others’: Evidence from the simultaneous-sequential paradigm. Psychonomic Bulletin & Review, 22, 1-6.

36.

Han, S. W., & Kim, M. S. (2008). Spatial working memory load impairs signal enhancement, but not attentional orienting. Perception & Psychophysics, 70, 916-923.

37.

Han, S. W., & Marois, R. (2013). The source of dual-task limitations: Serial or parallel processing of multiple response selections? Attention, Perception & Psychophysics, 75, 1395- 1405.

38.

Henson, R. N., Price, C. J., Rugg, M. D., Turner, R., & Friston, K. J. (2002). Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. NeuroImage, 15, 83-97.

39.

Huang, L., & Pashler, H. (2005). Attention capacity and task difficulty in visual search. Cognition, 94, B101-B111.

40.

Isreal, J. B., Chesney, G. L., Wickens, C. D., & Donchin, E. (1980). P300 and tracking difficulty: evidence for multiple resources in dual-task performance. Psychophysiology, 17, 259-273.

41.

Jiang, Y., Saxe, R., & Kanwisher, N. (2004). Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period. Psychological Science, 15, 390-396.

42.

Johnson, J. A., & Zatorre, R. J. (2005). Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cerebral Cortex, 15(10), 1609- 1620.

43.

Johnson, J. A., & Zatorre, R. J. (2006). Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. NeuroImage, 31, 1673-1681.

44.

Johnston, J. C., McCann, R. S., & Remington, R. W. (1995). Chronometric evidence for two types of attention. Psychological Science, 6, 365-369.

45.

Jolicoeur, P. (1998). Modulation of the attentional blink by on-line response selection: Evidence from speeded and unspeeded Task1 decisions. Memory & Cognition, 26, 1014-1032.

46.

Jolicoeur, P. (1999). Concurrent response-selection demands modulate the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 25, 1097-1113.

47.

Jolicoeur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202.

48.

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall.

49.

Kawahara, J.-I., Kumada, T., & Di Lollo, V. (2006). The attentional blink is governed by a temporary loss of control. Psychonomic Bulletin & Review, 13, 886-890.

50.

Kleiss, J. A., & Lane, D. M. (1986). Locus and persistence of capacity limitations in visual information processing. Journal of Experimental Psychology: Human Perception and Performance, 12, 200-210.

51.

Kok, A. (1997). Event-related-potential (ERP) reflections of mental resources: a review and synthesis. Biological Psychology, 45, 19-56.

52.

Kramer, A. F., Wickens, C. D., & Donchin, E. (1983). An analysis of the processing requirements of a complex perceptual-motor task. Human Factors, 25, 597-621.

53.

Lachter, J., Forster, K. I., & Ruthruff, E. (2004). Forty-five years after Broadbent (1958): Still no identification without attention. Psychological Review, 111, 880-913.

54.

Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-468.

55.

Lavie, N. (1997). Visual feature integration and focused attention: response competition from multiple distractor features. Perception & Psychophysics, 59, 543-556.

56.

Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 74-82.

57.

Lavie, N., & DeFockert, J. W. (2003). Contrasting effects of sensory limits and capacity limits in visual selective attention. Perception & Psychophysics, 65, 202-212.

58.

Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.

59.

Lu, Z., -L., & Dosher, B. (1998). External noise distinguishes attention mechanisms. Vision Research, 38, 1183-1198.

60.

Lu, Z. L., Lesmes, L. A., & Dosher, B. A. (2002). Spatial attention excludes external noise at the target location. Journal of Vision, 2, 312-323.

61.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

62.

Marois, R., Chun, M. M., & Gore, J. C. (2000). Neural correlates of the attentional blink. Neuron, 28, 299-308.

63.

Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9, 296-305.

64.

McCann, R. S., & Johnston, J. C. (1992). Locus of the single-channel bottleneck in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 18, 471-484.

65.

McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42, 677-686.

66.

Meyer, D., & Kieras, D. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of a psychological refractory-period phenomenon. Psychological Review, 104, 749-791.

67.

Miller, J., Ulrich, R., & Rolke, B. (2009). On the optimality of serial and parallel processing in the psychological refractory period paradigm: Effects of the distribution of stimulus onset asynchronies. Cognitive Psychology, 58, 273-310.

68.

Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44, 193-251.

69.

Nieuwenstein, M. R., Chun, M. M., van der Lubbe, R. H., & Hooge, I. T. (2005). Delayed attentional engagement in the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 31, 1463-1475.

70.

Nieuwenstein, M. R., Potter, M. C., & Theeuwes, J. (2009). Unmasking the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 35, 159-169.

71.

Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 4, 44-64.

72.

O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584-587.

73.

Olivers, C. N., & Nieuwenhuis, S. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal attention. Psychological Science, 16, 265-269.

74.

Olivers, C. N., & Nieuwenhuis, S. (2006). The beneficial effects of additional task load, positive affect, and instruction on the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 32, 364-379.

75.

Palmer, J. (1994). Set-size effects in visual search: The effect of attention is independent of the stimulus for simple tasks. Vision Research, 13, 1703-1721.

76.

Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358-377.

77.

Pashler, H. (1991). Shifting visual attention and selecting motor responses: Distinct attentional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 17, 1023-1040.

78.

Pashler, H. (1994a). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220-244.

79.

Pashler, H. (1994b). Graded capacity-sharing in dual-task interference? Journal of Experimental Psychology: Human Perception and Performance, 20, 330-342.

80.

Pashler, H. (1998). The psychology of attention. Cambridge, MA: MIT Press.

81.

Pashler, H., & Johnston, J. C. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. Quarterly Journal of Experimental Psychology, 41A, 161-191.

82.

Pinsk, M. A., Doniger, G. M., & Kastner, S. (2004). Push-pull mechanism of selective attention in human extrastriate cortex. Journal of Neurophysiology, 92, 622-629.

83.

Prinzmetal, W., & Banks, W. P. (1983). Perceptual capacity limits in visual detection and search. Bulletion of the Psychonomic Society, 21, 263-266.

84.

Prinzmetal, W., McCool, C., & Park, S. (2005). Attention: Reaction time and accuracy reveals different mechanisms. Journal of Experimental Psychology: General, 134, 73-92.

85.

Prinzmetal, W., Park, S., & Garrett, R. (2005). Involuntary attention and identification accuracy. Perception & Psychophysics, 67, 1344- 1353.

86.

Prinzmetal, W., Zvinyatskovskiy, A., Gutierrez, P., & Dilem, L. (2009). Voluntary and involuntary attention have different consequences: The effect of perceptual difficulty. Quarterly Journal of Experimental Psychology, 62, 352-369.

87.

Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vision, 3, 179-197.

88.

Raymond, J., E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849-860.

89.

Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278, 1616-1619.

90.

Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61, 168-185.

91.

Ruthruff, E., Johnston, J. C., & Remington, R. W. (2009). How strategic is the central bottleneck: Can it be overcome by trying harder? Journal of Experimental Psychology: Human Perception and Performance, 35, 1368-1384.

92.

Santee, J. L., & Egeth, H. E. (1982). Do reaction time and accuracy measure the same aspect of letter recognition? Journal of Experimental Psychology: Human Perception and Performance, 8, 489-501.

93.

Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80, 159-177.

94.

Schumacher, E., Seymour, T., Glass, J., Fencsik, D., Lauber, E., Kieras, D., et al. (2001). Virtually perfect time sharing in dual-task performance: Uncorking the central cognitive bottleneck. Psychological Science, 12, 101-108.

95.

Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15, 770-786.

96.

Serences, J. T., Yantis, S., Culberson, A., & Awh, E. (2004). Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. Journal of Neurophysiology, 92, 3538-2545.

97.

Shiffrin, R. M., & Gardner, G. T. (1972). Visual processing capacity and attentional control. Journal of Experimental Psychology, 93, 72-82.

98.

Shim, W. M., Alvarez, G. A., Vickery, T. J., & Jiang, Y. V. (2009). The Number of Attentional Foci and Their Precision Are Dissociated in the Posterior Parietal Cortex. Cerebral Cortex.

99.

Sigman, M., & Dehaene, S. (2006). Dynamics of the central bottleneck: dual-task and task uncertainty [Electronic Version]. PLoS Biology, 4, e220. Retrieved Jul 2008 from http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0040220.

100.

Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. Journal of Neuroscience, 28, 7585-7598.

101.

Telford, C. (1931). The refractory phase of voluntary and associative response. Journal of Experimental Psychology, 14, 1-35.

102.

Thornton, T. L., & Gilden, D. L. (2007). Parallel and serial processes in visual search. Psychological Review, 114, 71-103.

103.

Todd, J. J., Han, S. W., Harrison, S., & Marois, R. (2011). The neural correlates of visual working memory consolidation: A time-resolved fMRI study. Neuropsychologia, 49, 1527-1536.

104.

Tombu, M., & Jolicoeur, P. (2002). All-or-none bottleneck versus capacity sharing accounts of the psychological refractory period phenomenon. Psychological Research, 66, 274-286.

105.

Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3-18.

106.

Tombu, M., & Jolicoeur, P. (2004). Virtually no evidence for virtually perfect time-sharing. Journal of Experimental Psychology: Human Perception and Performance, 30, 795-810.

107.

Tombu, M., & Jolicoeur, P. (2005). Testing the predictions of the central capacity sharing model. Journal of Experimental Psychology: Human Perception and Performance, 31, 790-802.

108.

Tombu, M., & Seiffert, A. E. (2008). Attentional costs in multiple-object tracking. Cognition, 108, 1-25.

109.

Townsend, J. T. (1972). Some results concerning the identifiability of parallel and serial processes. British Journal of Mathmatical and Statistical Psychology, 25, 168-199.

110.

Townsend, J. T. (1990). Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee but the can (and should) be distinguished. Psycholgical Science, 1, 46-54.

111.

Treisman, A. M., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97-136.

112.

Verghese, P. (2001). Visual search and attention: A signal detection theory approach. Neuron, 31, 523-535.

113.

Vogel, E. K., Luck, S. J., & Woodman, G. F. (2001). Storage of features, conjunctions and object in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92-114.

114.

Wickens, C., Kramer, A., Vanasse, L., & Donchin, E. (1983). Performance of concurrent tasks: A psychophysiological analysis of the reciprocity of information- processing resources. Science, 221, 1080-1082.

115.

Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867-869.

116.

Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121-138.

117.

Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295-340.

118.

Yi, D. J., Woodman, G. F., Widders, D., Marois, R., & Chun, M. M. (2004). Neural fate of ignored stimuli: dissociable effects of perceptual and working memory load. Nature Neuroscience, 7, 992-996.

The Korean Journal of Cognitive and Biological Psychology