바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

확률 단서 효과의 속성과 발생 기제

The properties and mechanism of probability cueing effect

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2019, v.31 no.1, pp.53-66
https://doi.org/10.22172/cogbio.2019.31.1.004
홍인재 (연세대학교)
정수근 (대구경북과학기술원부설한국뇌연구원)

초록

독립적으로 발생한 사건들을 경험적으로 누적하여 하나의 규칙성을 발견하고, 이를 이용해 자극 출현 확률이 높은 공간으로 공간 주의의 편향이 유발되는 것을 확률 단서 효과(probability cueing effect)라 한다. 확률 단서 학습은 다수의 사건들로부터 통계적 규칙성을 암묵적으로 추론해낸다는 점에서 인간의 효율적인 정보 통합 능력을 보여준다. 확률 단서 학습은 기존의 상향 및 하향적 주의 모델로 설명되지 않는 습관성 주의의 증거를 제시한다는 점에서 중요성이 크지만 확률 단서 효과의 발생 기제에 관한 연구는 아직까지 미비한 실정이다. 본 개관 논문에서는 선행 연구들을 통해 확률 단서 효과의 속성을 살펴보았다. 또한, 확률 단서 학습이 발생하는 과정에 대한 기존의 모델과 수정된 모델을 제안하고, 이를 검증하기 위한 신경학적 연구의 방향성을 논의하였다.

keywords
probability cueing effect, visual search, statistical learning, 확률 단서 효과, 시각 탐색, 통계학습, 개관

Abstract

Probability cueing effect refers to a spatial bias to a certain region where a target is frequently presented. It is thought to be one of the representative forms of incidental learning that shows the efficiency of human visual system. The probability cueing paradigm provides evidence for habitual attention, which cannot be explained by the top-down and bottom-up attention dichotomy. In the current review article, we examined the key properties of the probability cueing effect and suggested a simple model of probability learning. In addition, we propose a possible direction of neuroimaging studies to test the suggested model and to explore the neural mechanisms of probability cueing effect.

keywords
probability cueing effect, visual search, statistical learning, 확률 단서 효과, 시각 탐색, 통계학습, 개관

참고문헌

1.

Addleman, D. A., Tao, J., Remington, R. W., & Jiang, Y. V. (2017). Explicit goal-driven attention, unlike implicitly learned attention, spreads to secondary tasks. Journal of Experimental Psychology: Human Perception and Performance, 44, 356-366. https://doi.org/10.1037/xhp0000457

2.

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437-443. https://doi.org/10.1016/j.tics.2012.06.010

3.

Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34, 210-224. https://doi.org/10.1016/j.tins.2011.02.003

4.

Basso, M. A., & Wurtz, R. H. (1998). Modulation of neuronal activity in superior colliculus by changes in target probability. The Journal of Neuroscience, 18, 7519-7534. https://doi.org/10.1523/JNEUROSCI.18-18-07519.1998

5.

Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 1-21. https://doi.org/10.1146/annurevneuro-060909-152823

6.

Brascamp, J. W., Pels, E., & Kristjánsson, Á. (2011). Priming of pop-out on multiple time scales during visual search. Vision Research, 51, 1972-1978. https://doi.org/10.1016/j.visres.2011.07.007

7.

Chua, K.-W., & Gauthier, I. (2016). Category-specific learned attentional bias to object parts. Attention, Perception, and Psychophysics, 78, 44-51. https://doi.org/10.3758/s13414-015-1040-0

8.

Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4, 170-178. https://doi.org/10.1016/S1364-6613(00)01476-5

9.

Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28-71. https://doi.org/10.1006/cogp.1998.0681

10.

Chun, M. M., & Jiang, Y. (1999). Top-Down Attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360-365. https://doi.org/10.1111/1467-9280.00168

11.

Cosman, J. D., & Vecera, S. P. (2014). Establishment of an attentional set via statistical learning. Journal of Experimental Psychology: Human Perception and Performance, 40, 1-6. https://doi.org/10.1037/a0034489

12.

Crump, M. J. C., Gong, Z., & Milliken, B. (2006). The context-specific proportion congruent Stroop effect: Location as a contextual cue. Psychonomic Bulletin and Review, 13, 316-321. https://doi.org/10.3758/BF03193850

13.

Crump, M. J. C., Vaquero, J. M. M., & Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness and Cognition, 17, 22-36. https://doi.org/10.1016/j.concog.2007.01.004

14.

Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157-163. https://doi.org/10.1016/S0959-4388(00)00191-4

15.

Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072-3077. https://doi.org/10.1152/jn.2000.84.6.3072

16.

Druker, M., & Anderson, B. (2010). Spatial probability aids visual stimulus discrimination. Frontiers in Human Neuroscience, 4(August), 1-10. https://doi.org/10.3389/fnhum.2010.00063

17.

Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269-297. https://doi.org/10.1146/annurev.psych.48.1.269

18.

Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: a priority map for target selection. Trends in Cognitive Sciences, 10, 382-390. https://doi.org/10.1016/j.tics.2006.06.011

19.

Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2017). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67-95. https://doi.org/10.1016/j.cortex.2017.09.027

20.

Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 458-467. https://doi.org/10.1037//0278-7393.28.3.458

21.

Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13, 520-525. https://doi.org/10.1111/1467-9280.00491

22.

Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception and Psychophysics, 67, 1252-1268. https://doi.org/10.3758/BF03193557

23.

Goschy, H., Bakos, S., Müller, H. J., & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1195. https://doi.org/10.3389/fpsyg.2014.01195

24.

Greene, A. J., Gross, W. L., Elsinger, C. L., & Rao, S. M. (2007). Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learning and Memory, 14, 548-553. https://doi.org/10.1101/lm.609807

25.

Han, S. H., & Kim, M.-S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15, 623-628. https://doi.org/10.1111/j.0956-7976.2004.00730.x

26.

Hong, I., Jeong, S.-K., & Kim, M.-S. (2018). Task relevance affects the context-dependency of implicit learning. Journal of Vision, 18, https://doi.org/643.10.1167/18.10.643.

27.

Hübner, R., & Mishra, S. (2016). Location-specific attentional control is also possible in the Simon task. Psychonomic Bulletin and Review, 23, 1867-1872. https://doi.org/10.3758/s13423-016-1057-y

28.

Ji, E., & Kim, M.-S. (2017). Unconscious endogenous attention. The Korean Journal of Cognitive and Biological Psychology, 29, 21-40.

29.

Jiang, Y., & Chun, M. M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology, 54A, 1105-1124. https://doi.org/10.1080/02724980042000516

30.

Jiang, Y. V. (2017). Habitual versus goal-driven attention. Cortex, 102, 107-120. https://doi.org/10.1016/j.cortex.2017.06.018

31.

Jiang, Y. V., Koutstaal, W., & Twedell, E. L. (2016). Habitual attention in older and young adults. Psychology and Aging, 31, 970-980. https://doi.org/10.1037/pag0000139

32.

Jiang, Y. V., & Swallow, K. M. (2014). Changing viewer perspectives reveals constraints to implicit visual statistical learning. Journal of Vision, 14, 1-16. https://doi.org/10.1167/14.12.3

33.

Jiang, Y. V., Swallow, K. M., & Capistrano, C. G. (2013). Visual search and location probability learning from variable perspectives. Journal of Vision, 13, 1-13. https://doi.org/10.1167/13.6.13

34.

Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology:Human Perception and Performance, 39, 285-297. https://doi.org/10.1037/a0028022

35.

Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception and Performance, 39, 87-99. https://doi.org/10.1037/a0027611

36.

Jiang, Y. V., Swallow, K. M., Won, B.-Y., Cistera, J. D., & Rosenbaum, G. M. (2015). Task specificity of attention training: the case of probability cuing. Attention, Perception, and Psychophysics, 77, 50-66. https://doi.org/10.3758/s13414-014-0747-7

37.

Jiang, Y. V., Won, B.-Y., & Swallow, K. M. (2014). First saccadic eye movement reveals persistent attentional guidance by implicit learning. Journal of Experimental Psychology: Human Perception and Performance, 40, 1161-1173. https://doi.org/10.1037/a0035961

38.

Jiang, Y. V., Won, B.-Y., Swallow, K. M., & Mussack, D. M. (2014). Spatial reference frame of attention in a large outdoor environment. Journal of Experimental Psychology:Human Perception and Performance, 40, 1346-1357. https://doi.org/10.1037/a0036779

39.

Jonides, J. (1980). Towards a model of the mind's eye's movement. Canadian Journal of Psychology, 34, 103-112. http://doi.org/10.1037/h0081031

40.

Kabata, T., & Matsumoto, E. (2012). Cueing effects of target location probability and repetition. Vision Research, 73, 23-29. https://doi.org/10.1016/j.visres.2012.09.014

41.

Katyal, S., Zughni, S., Greene, C., & Ress, D. (2010). Topography of covert visual attention in human superior colliculus. Journal of Neurophysiology, 104, 3074-3083. https://doi.org/10.1152/jn.00283.2010

42.

Krauzlis, R. J., Lovejoy, L. P., & Zénon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165-182. https://doi.org/10.1146/annurevneuro-062012-170249.

43.

Kruijne, W., & Meeter, M. (2015). The long and the short of priming in visual search. Attention, Perception, and Psychophysics, 77, 1558-1573. https://doi.org/10.3758/s13414-015-0860-2

44.

Leber, A. B., Gwinn, R. E., Hong, Y., & O’Toole, R. J. (2016). Implicitly learned suppression of irrelevant spatial locations. Psychonomic Bulletin and Review, 23, 1873-1881. https://doi.org/10.3758/s13423-016-1065-y

45.

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian Cognitive Modeling: A Practical Course. New York: Cambridge University Press.

46.

Li, C.-L., Aivar, M. P., Tong, M. H., & Hayhoe, M. M. (2018). Memory shapes visual search strategies in large-scale environments. Scientific Reports, 8, 4324. https://doi.org/10.1038/s41598-018-22731-w

47.

Lucas, N., Schwartz, S., Leroy, R., Pavin, S., Diserens, K., & Vuilleumier, P. (2013). Gambling against neglect:Unconscious spatial biases induced by reward reinforcement in healthy people and brain-damaged patients. Cortex, 49, 2616-2627. https://doi.org/10.1016/j.cortex.2013.06.004

48.

Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception and Psychophysics, 58, 977-991. https://doi.org/10.3758/BF03206826

49.

Manelis, A., & Reder, L. M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning and Memory, 19, 527-534. https://doi.org/10.1101/lm.025973.112

50.

Montefinese, M., Sulpizio, V., Galati, G., & Committeri, G. (2015). Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychological Research, 79, 687-697. https://doi.org/10.1007/s00426-014-0598-9

51.

Oh, S. H., & Kim, M.-S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin and Review, 11, 275-281. https://doi.org/10.3758/BF03196570

52.

Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3-25. https://doi.org/10.1080/00335558008248231

53.

Reber, P. J. (2013). The neural basis of implicit learning and memory: a review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026-2042. https://doi.org/10.1016/j.neuropsychologia.2013.06.019

54.

Salovich, N. A., Remington, R. W., & Jiang, Y. V. (2018). Acquisition of habitual visual attention and transfer to related tasks. Psychonomic Bulletin and Review, 25, 1052-1058. https://doi.org/10.3758/s13423-017-1341-5

55.

Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473-500. https://doi.org/10.1146/annurev.neuro.23.1.473

56.

Schwark, J., & Dolgov, I. (2013). The influence of spatial and feature probability cuing in visual search. Perception, 42, 470-472. https://doi.org/10.1068/p7469

57.

Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 10, 38-45. https://doi.org/10.1016/j.tics.2005.11.008

58.

Serences, J. T., & Yantis, S. (2007). Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cerebral Cortex, 17, 284-293. https://doi.org/10.1093/cercor/bhj146

59.

Shaqiri, A., & Anderson, B. (2012). Spatial probability cuing and right hemisphere damage. Brain and Cognition, 80, 352-360. https://doi.org/10.1016/j.bandc.2012.08.006

60.

Shaqiri, A., & Anderson, B. (2013). Priming and statistical learning in right brain damaged patients. Neuropsychologia, 51, 2526-2533. https://doi.org/10.1016/j.neuropsychologia. 2013.09.024

61.

Sisk, C. A., Twedell, E. L., Koutstaal, W., Cooper, S. E., & Jiang, Y. V. (2018). Implicitly-learned spatial attention is unimpaired in patients with Parkinson's disease. Neuropsychologia, 119, 34-44. https://doi.org/10.1016/j.neuropsychologia.2018.07.030

62.

Smith, A. D., Hood, B. M., & Gilchrist, I. D. (2010). Probabilistic cuing in large-scale environmental search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 605-618. https://doi.org/10.1037/a0018280

63.

Smith, A. D., Wallace, F., Hood, B., & Gilchrist, I. D. (2009). Mechanisms of large-scale environmental search: Probability cueing depends on the relationship between landmarks and target distribution. Cognitive Processing, 10(Suppl 2), 305-306. https://doi.org/10.1007/s10339-009-0312-9

64.

Theeuwes, J. (1994). Endogenous and exogenous control of visual selection. Perception, 23, 429-440. https://doi.org/10. 1068/p230429

65.

Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin and Review, 11, 65-70. https://doi.org/10.3758/BF03206462

66.

Thompson, K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in Brain Research, 147, 251-262. https://doi.org/10.1016/S0079-6123(04)47019-8

67.

Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134, 552-564. https://doi. org/10.1037/0096-3445.134.4.552

68.

Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934-1945. https://doi.org/10.1162 jocn.2009.21131

69.

Twedell, E. L., Koutstaal, W., & Jiang, Y. V. (2017). Aging affects the balance between goal-guided and habitual spatial attention. Psychonomic Bulletin and Review, 24, 1135-1141. https://doi.org/10.3758/s13423-016-1214-3

70.

Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects in visual search: An effect of sequential dependencies. Journal of Experimental Psychology: Human Perception and Performance, 32, 1294-1301. https://doi. org/10.1037/0096-1523.32.5.1294

71.

Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80, 860-870. https://doi.org/10.3758/s13414-018-1493-z

72.

Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44, 13-17. https://doi.org/10.1037/xhp0000472

73.

Wendt, M., Kluwe, R. H., & Vietze, I. (2008). Location-specific versus hemisphere-specific adaptation of processing selectivity. Psychonomic Bulletin and Review, 15, 135-140. https://doi.org/10.3758/PBR.15.1.135

74.

Wolfe, J. M., Alvarez, G. A., & Horowitz, T. S. (2000). Attention is fast but volition is slow. Nature, 406, 691. https://doi.org/10.1038/35021132

75.

Won, B.-Y., & Jiang, Y. V. (2015). Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 787-806. http://doi.org/10.1037/xlm0000040

76.

Won, B.-Y., & Leber, A. B. (2016). Search for targets in visual working memory is biased by statistical learning. Journal of Vision, 16, 365. https://doi.org/10.1167/16.12.365

77.

Won, B.-Y., Lee, H. J., & Jiang, Y. V. (2015). Statistical learning modulates the direction of the first head movement in a large-scale search task. Attention, Perception, and Psychophysics, 77, 2229-2239. https://doi.org/10.3758/s13414-015-0957-7

78.

Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin and Review, 11, 269-274. https://doi.org/10.3758/ BF03196569

한국심리학회지: 인지 및 생물