ISSN : 1226-9654
범죄 목격자가 목격 단서와 목격하지 않은 단서를 재인하는 과정에서 회상이나 원정보 탐색과 같은 정보처리 방식에는 차이가 있을 것이다. 본 연구는 인출 처리를 반영하는 사건관련전위 성분을 분석한다면, 목격 여부를 변별할 수 있을 것으로 가정했다. 구체적으로 두정 중심 부근의 영역(Pz)에서 목격한 자극을 탐침자극으로 제시했을 때 목격하지 않았던 무관련자극보다 400∼600ms 구간의 late positive component(LPC)는 더 크게, 1200∼1400ms 구간의 late posterior negativity(LPN)는 더 낮게 나타날 것으로 보고, 이 두 사건관련전위 성분의 차이(LPC-LPN)를 부트스트랩 방법(peak-to-peak boostrapped amplitude difference)으로 분석하여 목격 여부를 변별하고자 했다. 참여자 25명은 범죄 동영상을 목격하고 1시간 후 과제를 수행했다. 재인 프로토콜 집단(n=13)은 물건 사진에 반응하는 과제 후 앞서 제시된 물건을 동영상에서 봤는지, 못 봤는지를 판단하는 재인 과제를 수행했으며, Target/Non-target(T/NT) 프로토콜 집단(n=12)은 물건 사진에 반응한 후, 물건의 배경색을 보고 목표 배경색에 반응하는 oddball 과제를 수행했다. 물건 자극을 처리할 때 발생한 사건관련전위를 분석했을 때 재인 프로토콜 집단에서만 동영상에서 목격했었던 탐침자극과 목격하지 못한 자극(변형자극, 무관련자극) 간 LPC와 LPN의 차이가 유의했다. 부트스트랩 방법을 이용하여 목격 여부를 변별했을 때, 재인 프로토콜 집단의 경우 13명 중 11명(84.6%)이 목격 여부를 정확하게 변별한 것으로 나타났다. T/NT 프로토콜 집단의 정확한 변별은 12명 중 2명(16.7%)에 불과했다. 이런 결과는 목격자들을 대상으로 기억 단서에 대한 재인 처리를 반영하는 사건관련전위를 분석하여 목격 여부를 조사할 수 있다는 것을 보여주며, 재인을 이끌어내는 과제의 속성이 중요하다는 것을 시사한다.
Some event-related potentials (ERPs) components reflect recognition information processes. In this study, we tested the accuracy of ERP-based memory classification using peak-to-peak bootstrapped amplitude difference (BAD) method. Participants (N=25) watched a mock-crime video and performed task about 1 hour later. One group (n=13) performed recognition protocol which a response was selected from seen or unseen responses after probe presentation. The other group (n=12) performed Target/Non-target (T/NT) protocol which a response was selected from target or non-target responses based on the color of background behind the memory cue. We analyzed cue-evoked ERP and the bootstrapped differences in recollection-related ERP components (late positive complex, LPC; late posterior negativity, LPN) at Pz site were used for classification (observed vs. unobserved). Analyzing ERP differences in recognition protocol group were highly effective in distinguishing between probe and the other type of stimulus (ACC = .85). On the other hands, analyzing ERP differences in T/NT task protocol group were useless for eyewitness memory Identification (ACC = .17). These results indicate neural activity evoked by recognition cue could be used for eyewitness investigation, and suggest the property of the task is important.
Abe, N., Okuda, J., Suzuki, M., Sasaki, H., Matsuda, T., Mori, E., . . . Fujii, T. (2008). Neural correlates of true memory, false memory, and deception. Cerebral Cortex, 18, 2811-2819.
Addante, R. J., Ranganath, C., & Yonelinas, A. P. (2012). Examining ERP correlates of recognition memory:evidence of accurate source recognition without recollection. Neuroimage, 62, 439-450.
Cansino, S., Maquet, P., Dolan, R. J., & Rugg, M. D. (2002). Brain activity underlying encoding and retrieval of source memory. Cerebral Cortex, 12, 1048-1056.
Ham, K. S., Kim, K. P., & Jeong, H. J. (2018a). Estimating eyewitness memory accuracy using event-related potentials(ERPs): Focusing on FN400 and LPC. Korean Journal of Investigative Psychology, 4(1), 1-12.
Ham, K. S., Kim, K. P., & Jeong, H. J. (2018b). Support Vector Machine(SVM)-based classification of eyewitness memory using single-trial EEG. The Korean Journal of Cognitive and Biological Psychology, 30, 413-419.
Ham, K. S., Kim, K. P., Jeong, H. J., & Yoo, S. H. (2018). The assessment of eyewitness memory using electroencephalogram: Application of machine learning algorithm. Korean Journal of Legal Medicine, 42, 62-70.
Johnson Jr, R. (1993). On the neural generators of the P300 component of the event‐related potential. Psychophysiology, 30, 90-97.
Kim, K. P., Jeong, H. J., & Ham, K. S. (2019). Comparison of deep-learning algorithms for EEG-based eyewitness memory classification system. Journal of Scientific Criminal Investigation, 13(2), 95-101.
Kim, K. P., Jeong, H. J., Kim, Y. S., & Ham, K. S. (2019). ERP correlates of eyewitness memory recognition:Effects of time delay and misinformation. The Korean Journal of Psychology: General, 38, 53-74.
Lefebvre, C. D., Marchand, Y., Smith, S. M., & Connolly, J. F. (2007). Determining eyewitness identification accuracy using event-related brain potentials (ERPs). Psychophysiology, 44, 894-904.
Mecklinger, A., Rosburg, T., & Johansson, M. (2016). Reconstructing the past: The late posterior negativity (LPN) in episodic memory studies. Neuroscience Biobehavioral Review, 68, 621-638.
Multhaup, K. S., De Leonardis, D. M., & Johnson, M. K. (1999). Source memory and eyewitness suggestibility in older adults. The Journal of General Psychology, 126, 74-84.
Ranganath, C., & Paller, K. A. (2000). Neural correlates of memory retrieval and evaluation. Cognitive Brain Research, 9, 209-222.
Rosenfeld, J. P., Hu, X., Labkovsky, E., Meixner, J., &Winograd, M. R. (2013). Review of recent studies and issues regarding the P300-based complex trial protocol for detection of concealed information. International Journal of Psychophysiology, 90, 118-134.
Rosenfeld, J. P., Hu, X., & Pederson, K. (2012). Deception awareness improves P300-based deception detection in concealed information tests. International Journal of Psychophysiology, 86, 114-121.
Rosenfeld, J. P., Labkovsky, E., Winograd, M., Lui, M. A., Vandenboom, C., & Chedid, E. (2008). The Complex Trial Protocol (CTP): A new, countermeasure-resistant, accurate, P300-based method for detection of concealed information. Psychophysiology, 45, 906-919.
Rosenfeld, J. P., Ward, A., Meijer, E. H., & Yukhnenko, D. (2017). Bootstrapping the P300 in diagnostic psychophysiology: How many iterations are needed?. Psychophysiology, 54, 366-373.
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Science, 11, 251-257.
Schacter, D. L., & Loftus, E. F. (2013). Memory and law:What can cognitive neuroscience contribute?. Nature Neuroscience, 16, 119-123.
Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23, 695-703.
Senkfor, A. J., & Van Petten, C. (1998). Who said what? An event-related potential investigation of source and item memory. Journal of Experimental Psychology:Learning, Memory, and Cognition, 24, 1005-1025.
Song, I. U., Kim, H. M., Lee, K. E., Chang, E. H., & Kim, H. T. (2018). The comparison of bootstrapping analyses in P300-CIT. The Korean Journal of Forensic Psychology, 9, 75-99.
Strozak, P., Bird, C. W., Corby, K., Frishkoff, G., & Curran, T. (2016). FN400 and LPC memory effects for concrete and abstract words. Psychophysiology, 53, 1669-1678.
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Science, 9, 445-453.
Wilding, E. L. (2000). In what way does the parietal ERP old/new effect index recollection? International Journal of Psychophysiology, 35, 81-87.
Woroch, B., & Gonsalves, B. D. (2010). Event-related potential correlates of item and source memory strength. Brain Research, 1317, 180-191.