바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

반응시간 분석으로 관찰한 실수와 착오의 행동 특성

Behavioral Characteristics of Slips and Mistakes Observed in The Analysis of Reaction Times

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2020, v.32 no.3, pp.271-277
https://doi.org/10.22172/cogbio.2020.32.3.002
이경면 (경북대학교)
김초복 (경북대학교)

초록

수행 오류는 대규모 인명 손실을 동반하는 심각한 재앙을 유발할 수 있다. 이러한 오류를 예방하기 위해서는 다양한 오류 유형의 행동적 특성을 규명하는 것이 필요하다. 이 연구는 인간공학 분야에서 개념적으로 분류한 오류 유형인 실수와 착오의 행동적 특성을 확인하기 위해, 선택적 주의가 요구되는 색상-단어 스트룹 과제와 규칙 인출이 요구되는 단어-도형 전환 과제에서 발생한 오류와 관련된 시행들의 반응시간을 비교하였다. 분석 결과, 스트룹 과제에서 관찰된 반응시간은 정확 시행보다 더 빠른 것으로 관찰되었지만, 전환 과제에서의 반응시간은 정확 시행보다 더 느린 것으로 나타났다. 또한 두 경우 모두 오류후 시행의 반응시간은 정확 시행보다 더 느린 것으로 관찰되었다. 이러한 결과는 실수와 착오가 행동적으로 서로 다른 행동 특성을 보인다는 것을 보여준다.

keywords
human errors, slips, mistakes, cognitive control, 수행 오류, 실수, 착오, 인지적 통제

Abstract

Human errors can cause various accidents which accompany massive loss of lives. In an effort to prevent such errors, it is necessary to identify behavioral characteristics of errors. The present study was conducted to identify behavioral characteristics of slips and mistakes that are conceptually classified error types in ergonomics. To this end, we compared between reaction times of error-related trials in the color-word Stroop task requiring selective attention and word-shape switching task requiring rule retrieval. The results indicated that reaction times were faster for the error trials than for the correct trials in the Stroop task, whereas those were slower for the error trials than for the correct trials in the switching task. In the both tasks, reaction times were slower for the post-error trials than the correct trials. These findings indicate that slips and mistakes can have different behavioral characteristics.

keywords
human errors, slips, mistakes, cognitive control, 수행 오류, 실수, 착오, 인지적 통제

참고문헌

1.

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624-652.

2.

Choi, J., & Kim, C. (2015). Performance error prediction based on reaction times. Journal of Social Science, 26, 3-21.

3.

Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2(233), 1-10.

4.

Dishon-Berkovits, M., & Algom, D. (2000). The stroop effect: It is not the robust phenomenon that you have thought it to be. Memory & Cognition, 28, 1437-1449.

5.

Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., . . . Petersen, S. E. (2006). A Core System for the Implementation of Task Sets. Neuron, 50, 799-812.

6.

Dutilh, G., Vandekerckhove, J., Forstmann, B. U., Keuleers, E., Brysbaert, M., & Wagenmakers, E.-J. (2012). Testing theories of post-error slowing. Attention, Perception, &Psychophysics, 74, 454-465.

7.

Eichele, H., Juvodden, H., Ullsperger, M., & Eichele, T. (2010). Mal-adaptation of event-related EEG responses preceding performance errors. Frontiers in Human Neuroscience, 4(65), 1-9.

8.

Fedota, J. R., & Parasuraman, R. (2010). Neuroergonomics and human error. Theoretical Issues in Ergonomics Science, 11, 402-421.

9.

Kim, C., Johnson, N. F., Cilles, S. E., & Gold, B. T. (2011). Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. Journal of Neuroscience, 31, 4771-4779.

10.

King, J. A., Korb, F. M., von Cramon, D. Y., & Ullsperger, M. (2010). Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing. The Journal of Neuroscience, 30, 12759-12769.

11.

Lee, Y., & Kim, C. (2016). Changes of proactive cognitive control according to inter-stimulus intervals. The Korean Journal of Cognitive and Biological Psychology, 28, 45-66.

12.

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134-140.

13.

Oh, Y., & Kim, C. (2016). Individual differences in cognitive flexibility during task switching according to cognitive style. The Korean Journal of Cognitive and Biological Psychology, 28, 241-252.

14.

Oh, Y., & Kim, C. (2019). Neural correlates of object and verbal cognitive style during task switching. The Korean Journal of Cognitive and Biological Psychology, 31, 199-209.

15.

Pailing, P. E., Segalowitz, S. J., Dywan, J., & Davies, P. L. (2002). Error negativity and response control. Psychophysiology, 39, 198-206.

16.

Rabbitt, P. M. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71, 264-272.

17.

Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7, 367-379.

18.

Schroder, H. S., & Infantolino, Z. P. (2013). Distinguishing between types of errors and adjustments. The Journal of Neuroscience, 33, 18356-18357.

19.

Shappell, S., Detwiler, C., Holcomb, K., Hackworth, C., Boquet, A., & Wiegmann, D. A. (2007). Human error and commercial aviation accidents: An analysis using the human factors analysis and classification system. Human Factors, 49, 227-242.

20.

Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132, 946-958.

21.

Steinhauser, M., Maier, M. E., & Ernst, B. (2017). Neural correlates of reconfiguration failure reveal the time course of task-set reconfiguration. Neuropsychologia, 106, 100-111.

22.

Weissman, D. H., Roberts, K. C., Visscher, K. M., &Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971-978.

23.

Wendt, M., & Kiesel, A. (2008). The impact of stimulus-specific practice and task instructions on response congruency effects between tasks. Psychological Research, 72, 425-432.

24.

Yi, K., & Kim, C. (2016). Prediction and classification of performance errors by machine learning - Focusing on inter-trial intervals. The Korean Journal of Cognitive and Biological Psychology, 28, 543-562.

한국심리학회지: 인지 및 생물