ISSN : 1226-9654
경제학 전공자와 수학 전공자에게 그래프를 보여주고 그래프에 적합한 설명을 고르거나 답을 계산하게 해서 전공이 그래프의 이해와 활용에 미치는 영향을 알아보았다. 실험 1에서는 경제학과 수학에서 많이 사용되는 그래프를 주고 적절한 설명을 고르게 하였다. 범례를 제공해 그래프의 내용을 추정할 수 있게 한 맥락조건에서 통제집단과 경제학 전공자는 범례의 맥락에 맞는 설명을 선택했으나, 수학전공자는 범례에 상관없이 수학적인 해석을 선택하였다. 범례를 제공하지 않은 무맥락 조건에서 통제집단은 특별한 선호가 없었으나, 경제학 전공자와 수학전공자는 자기의 전공에 맞는 해석을 선택하였다. 실험 2에서는 경제학 전공자와 수학전공자에게 경제학 문제에 대한 답을 계산하게 하였는데, 보기로 주어진 두 계산식이 다 적용가능한 애매조건에서는 전공에 상관없이 두 계산식을 비슷하게 사용하였다. 그러나 하나의 식만 적용가능한 확실조건에서는 경제학 전공자가 정답을 더 많이 보고하였다. 두 개의 실험 결과는 표면 정보가 주어지지 않는 경우와 문제에 대한 제약조건을 알아야 하는 경우에 전공의 영향이 크게 나타남을 보여주었다.
Two experiments were conducted to study the effects of knowledge on the interpretation of graphs and the use of information in the graphs. The effects of knowledge on the interpretation of graphs were explored in Experiment 1. In Experiment 1, three groups of undergraduate students (control, economics major, mathematics major) were given graphs of two areas (economics, mathematics) and were asked to choose the most appropriate interpretation of each graph among four alternatives. In the Context condition, where the legends of the graphs and some background information was given with the graphs so that participant's major would not exert any influence on the interpretation of the graphs, control group and economic major students chose the interpretation that matches the context. Whereas in the No-Context condition, where only the graphs were given, participants chose the interpretation that is in accord with their major. In Experiment 2, two groups of participants (economics major, mathematics major) were asked to calculate the answers to three economics problems. Two equations were given in each problem as hints. In the Ambiguous condition, where the two equations were eligible for the problem, both economics major and mathematics chose either equation equally often. However, in the Determinate condition, where only one of the two equations was eligible for the problem, only economics major students used the right equation more often. The results of the two experiments showed that the effect of knowledge is constrained by the task at hand and the information given by the context. That is, the effect of knowledge seemed to exert influence when the problem needs relevance judgment or when there is not enough information in the graphs.
김경환, 김종석 역 (2005). 맨큐의 경제학 (Mankiw, G. (2004). Principles of Economics. Belmont: Thomson). 서울: 교보문고.
노정학, 박성로, 이종근. (2002). 해석학 입문. 서울: 교우사.
홍성대. (2003). 수학의 정석. 서울: 성지출판사.
Bassok, M., & Holyoak, K. J. (1989). Interdomain transfer between isomorphic topics in algebra and physics. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 153-166.
Blessing, S. B., & Ross, B. H. (1996). Content effects in problem categorization and problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 792-810.
Carpenter, P. A., & Shah P. (1998). A Model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied, 4, 75-100.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152.
Devine, D. J., & Kozlowski, S. W. J. (1995). Domain-specific knowledge and task characteristics in decision making. Organizational Behavior and Human Decision Processes, 64, 294-306.
Fong, G. T., Krantz, D. H., & Nisbett, R. E. (1986). The effects of statistical training on thinking about everyday problems. Cognitive Psychology, 18, 253-292.
Glaser, R., & Chi, M. T. H. (1988). Overview. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise. Hillsdale, NJ: Erlbaum.
Guthrie, J. T., & Mosenthal, P. (1987). Literacy as multidimensional: Locating information and reading comprehension. Educational Psychologist, 22, 279-297.
Guthrie, J. T., Weber, S., & Kimmerly, N. (1993). Searching documents: Cognitive processes and deficits in understanding graphs, tables, and illustrations. Contemporary Educational Psychology, 18, 186-221.
Hinds, P. J., Patterson, M., & Pfeffer, J. (2001). Bothered by abstraction: The effect of expertise on knowledge transfer and subsequent novice performance. Journal of Applied Psychology, 86, 1232-1243.
Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory and Cognition, 15, 332-340.
Lehman, D. R., Lempert, R. O., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: Formal discipline and thinking about everyday life events. American Pychologist, 43, 431-443.
Lehman, D. R., & Nisbett, R. E. (1990). A longitudinal study of the effects of undergraduate education on reasoning. Developmental Psychology, 26, 952-960.
Schoenfeld, A. Y., & Hermman, D. J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psychology : Learning, Memory, and Cognition, 8, 484-494.
Shah, P. (2002). Graph comprehension: The role of format, content and individual differences. In M. Anderson, B. Meyer, & P. Olivier (Eds.), Diagrammatic representation and reasoning (pp. 173-185). Berlin: Springer.
Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational Psychology Review, 14, 47-69.
Tanaka, J., & Taylor, M. (1991). Objective categories and expertise: Is the basic level in the eye of the beholder? Cognitive Psychology, 23, 457-482.
van Lehn, K. (1989). Problem-solving and cognitive skill acquisition. In M. I. Posner (Ed.), The foundation of cognitive science. Cambridge, MA: MIT Press.