ISSN : 1226-9654
This study examined the effects of amygdala inactivation on the expression of conditioned fear and the performance of active avoidance. Rats, with chronic cannulae placed bilaterally in the amygdala, were given 30 active avoidance training trials for 3 days and 1 or 2 days later tested for conditioned fear and active avoidance immediately after muscimol or buffer injection into the amygdala. As a result, activity to the CS in the amygdala inactivation group was larger than that of controls while performance of active avoidance was not different. In other words, amygdala inactivation impaired expression of conditioned fear but not active avoidance response. These findings suggest that both memory storage and memory modulation, different view about the role of amygdala, are correct in part and the discrepancy between the two stems from the task difference in part. Thus, amygdala seems to be the locus of CS-US association and, at the same time, modulates memory consolidation in other brain regions. It means that neural mechanisms for the expression of conditioned fear and the performance of active avoidance are not the same.
김문수, (1997) 회피학습의 정도와 공포기억의 강도 사이의 관계: 과학습이 공포를 감소시키는가, 한국심리학회지: 생물 및 생리
김문수, (2002) 회피학습의 정도와 공포기억의 강도 사이의 관계 III: 학습상황 대 검사상황의 맥락변별의 효과, 한국심리학회지: 생물 및 생리
한정수, (1991) 경악반응 측정법, 한국심리학회지: 생물 및 생리
Allen, T. A., (2008) Imaging the spread of reversible brain inactivations using fluorescent muscimol, Journal of Neuroscience Methods
Annau, Z., (1961) The conditioned emotional response as a function of intensity of the US, Journal of Comparative Physiological Psychology
Brioni, J. D., (1989) Involvement of the amygdala GABAergic system in the modulation of memory storage, Brain Research
Chapman, P. F., (1990) Long-term synaptic potentiation in the amygdala, Synapse
Clugnet, M.-C., (1990) Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body, Journal of Neuroscience
Collins, D. R., (2000) Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS+ and CS-, Learning and Memory
Davis, M., (1997) Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD, Annals of the New York Academy of Sciences
Gentile, C. G., (1986) The role of amygdaloid central nucleus in the retention of differential Pavlovian conditioning of bradycardia in rabbits, Behavioral Brain Research
Gold, P. E., (1975) Memory interference and facilitation with posttrial amygdala stimulation: effect on memory varies with footshock level, Brain Research
Goosens, K. A., (2004) NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala, European Journal of Neuroscience
Hitchcock, J., (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm, Behavioral Neuroscience
Horvath, F.E., (1963) Effects of basolateral amygdalectomy on three types of avoidance behavior in cats, Journal of Comparative and Phyiological Psychology
Kesner, R.P., (1982) Brain stimulation: Effects on memory, Behavioral and Neural Biology
Killcross, S., (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala, Nature
Kim, M., (1993) Electrolytic lesions of the amygdala block acquisition and expression of fear-potentiated startle even with extensive training but do not prevent reacquisition, Behavioral Neuroscience
Kim, M., (1993) Lack of a temporal gradient of retrograde amnesia in rats with amygdala lesion assessed with the fear-potentiated startle paradigm, Behavioral Neuroscience
LeDoux, J. E., (1995) Emotion: clues from the brain, Annual Review of Psychology
LeDoux, J.E., (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning, Journal of Neuroscience
LeDoux, J.E., (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala, Journal of Neurophysiology
Liang, K. C., (1982) Post-training amygaloid lesions impair retetntion of an inhibitory avoidance response, Behavioral Brain Research
Maren, S. , (2000) Auditory fear conditioning increase CS-elicited spike firing in lateral amygdala neurons even after extensive overtraining, European Journal of Neuroscience
Maren, S., (1996) Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient, Behavioral Neuroscience
Maren, S., (1996) The amygdala and fear conditioning:has the nut been cracked?, Neuron
McGaugh, J. L., (1990) Significance and rememberance: The role of neuromodulatory systems, Psychological Science
Miserendino, M.J.D., (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala, Nature
Muller, J., (1997) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli, Behavioral Neuroscience
Pare, D., (2004) New vistas on amygdala networks in conditioned fear, Journal of Neurophysiology
Parent, M. B., (1992) Increased training in an aversively motivated task attenuates the memory- impairing effects of posttraining N-methyl- D-aspartate-induced amygdala lesions, Behavioral Neuroscience
Parent, M. B., (1994) Memory of rats with amygdala lesions induced 30 days after footshock-motivated escape training reflects degree of original training, Behavioral Neuroscience
Parreo, A., (1985) A new stabilimeter for small laboratory animals, Physiology and Behavior
Paxinos, G., (1986) The rat brain in stereotaxic coordinates, Academic Press
Quirk, G. J., (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala, Neuron
Rogan, M. T., (1997) Fear conditioning induces associative long-term potentiation in the amygdala, Nature
Thatcher, R.W., (1966) Effect of amygdaloid lesions on retention of an avoidance response in overtrained and non-overtrained rats, Psychonomic Science
Tinsley, M. R., (2004) The role of muscarinic and nicotinic cholinergic neurotransmission in aversive conditioning: comparing pavlovian fear conditioning and inhibitory avoidance, Learning and Memory
Tye, K. M., (2008) Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning, Nature
Wilensky, A. E., (2006) Rethinking the fear circuit: The central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning, Journal of Neuroscience
Wilensky, A. E., (1999) Functional inactivation of the amygdala before but not after auditory fear conditioning prevents memory formation, Journal of Neuroscience
Zimmerman, J. M., (2007) The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining, Learning and Memory