바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

The Effect of Content Familiarity on Memory-Based Attention Allocation

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2009, v.21 no.2, pp.129-145
https://doi.org/10.22172/cogbio.2009.21.2.005
(University of Illinois at Urbana-Champaign, Beckman Institute)

  • Downloaded
  • Viewed

Abstract

Studies of attention and working memory address that working memory contents guide attention to the memory-matching object in the scene. The present study investigated whether familiarity of working memory contents modulates the memory-based attention allocation. We measured the attention allocation by comparing response times (RT) for memory-matching or non-matching probes while maintaining either novel or familiar object in working memory. When a novel object was maintained in working memory, probe RTs at the memory-match object were significantly faster than those on non-match object (Experiment 1). However, when participants maintained a familiar or highly learned object in working memory, there was no probe RT advantage for the memory-match object (Experiments 2, 3, and 4). These results demonstrate that working memory does not automatically bias attention towards the memory-matching item; instead, the bias was present only for novel working memory contents. Thus, the guidance of attention by working memory contents could be due to a top-down strategy where participants re-sample the memory item in the visual array in order to reduce the cognitive complexity of working memory maintenance.

keywords
시각적 작업 기억, 공간적 주의, 친숙성, visual working memory, spatial attention, familiarity, visual working memory, spatial attention, familiarity

Reference

1.

Awh, E., Vogel, E. K., & Oh, S.-H. (2006). Interactions between attention and working memory. Neuroscience, 139, 201-208.

2.

Baddeley, A. D., & Hitch, G. J. (1974). Working memory, In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47-90). New York: Academic Press.

3.

Baddeley, A. D. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, 49A, 5-28.

4.

Broadbent, D. E. (1958). Perception and communication. London: Pergamon.

5.

Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523-47.

6.

Chelazzi, L., Duncan, J., Miller, E, K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2910-2940.

7.

Chelazzi, L., Miller, E. K., Duncan, J., &Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345-347

8.

Chun, M. M., & Jiang, Y. (1999). Top down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360-365.

9.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-185.

10.

Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London: Series B, 353, 1245-1255.

11.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.

12.

Downing, P. E. (2000). Interaction between visual working memory and selective attention. Psychological Science, 11(6), 467-463.

13.

Duncan, J. (1998). Converging levels of analysis in the cognitive neuroscience of visual attention. Philosophical Transactions of the Royal Society of London: Series B., 353, 1307-1317.

14.

Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211-245.

15.

Fuster, J. (1995). Memory in the cerebral cortex. Cambridge: The MIT Press.

16.

Gabrieli, J. D. E., Brewer, J. B., Desmond, J.E., &Glover, G. H. (1997). Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science, 276, 264-266

17.

Harter, M. R., & Aine, C. J. (1984). Brain mechanisms of visual selective attention. In R. Parasuraman, & D. R. Davies (Ed.), Varieties of attention (pp. 293-321), Orlando, FL: Academic Press.

18.

Kahneman, D., Treisman, A. M., & Gibbs, B. J. (1992). The reviewing of object files: object-specific integration of information. Cognitive Psychology, 24, 175-219.

19.

Kim, M.-S., & Cave, K. R. (1995). Spatial attention in visual search for features and feature conjunctions. Psychological Science, 6, 376-380.

20.

Kim, M.-S., & Cave, K. R. (1999). Top-down ,and bottom-up attentional control: On the nature of interference from a salient distractor. Perception and Psychophysics, 61, 1009-1023.

21.

Kim, M.-S., & Cave, K. R. (2001). Perceptual grouping via spatial attention in a focused-attention task. Vision Research, 41, 611-624.

22.

Kimberg, D. Y., D'Esposito, M., & Farah, M. J. (1997). Cognitive functions in the prefrontal cortex-working memory and executive control. Current Directions in Psychological Science, 6, 185-192.

23.

Kirchhoff, B. A., Wagner, A. D., Maril, A., & Stern, C. E. (2000). Prefrontal-temporal circuitry for episodic encoding and subsequent memory. The Journal of Neuroscience, 20, 6173-6180.

24.

Mishkin, M., & Delacour, J. (1975). An analysis of short-term visual memory in the monkey. Journal of Experimental Psychology: Animal Behavior Process, 1, 326-334.

25.

Neisser, U. (1967). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience, 14, 2178-2189.

26.

Oh, S.-H., & Kim, M.-S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin & Review, 11(2), 275-281.

27.

Pashler, H., & Shiu, L.-P. (1999). Do images involuntarily trigger search? A test of Pillsbury’s hypothesis. Psychonomic Bulletin and Review, 6, 445-448.

28.

Pessoa, L., Guitierrez, E., Bandettini, P. Al, & Ungeleider, L. G.(2002). Neural correlates of visual working memory: FMRI amplitude predicts task performance. Neuron, 35, 975-987.

29.

Postle, B. R., & D’Esposito, M. (1999). What –then- where in visual working memory: An event-related fMRI study. Journal of Cognitive Neuroscience, 11, 585-579.

30.

Schneider, W., & Schiffrin, R. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127-190.

31.

Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31, 2, 248-261.

32.

Stern, E. C., Corkin, S., Gonzalez, R. G., Cuimaraes, A. R., Baker, J. R., Jennings, P. J.,Carr, C. A., Sugiura, R. M., Vedantham, V., & Rosen, B. R. (1996). The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences USA, 93, 8660-8665.

33.

Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11(2), 269-274.

34.

Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33, 2, 363-377.

The Korean Journal of Cognitive and Biological Psychology