바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

The Effect of Spatio-Temporal Contextual Information in Visual Working Memory on Change Detection Process

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2012, v.24 no.2, pp.167-189
https://doi.org/10.22172/cogbio.2012.24.2.005


  • Downloaded
  • Viewed

Abstract

According to the hypothesis of integrated representations in visual working memory (VWM; Luck & Vogel, 1997), the present study tested if spatio-temporal contextual information in VWM can affect change detection performance. In Experiments, sample items were displayed either at fixed positions that would be easily organized into two distinctive groups or otherwise at random positions that would be difficult for such spatial organization. For the purpose of examining how the selection demand on the spatio-temporal information of the sample items affect change detection accuracy, the test items were displayed in a way that either every sample items (e.g., whole probe) or only a subset of the sample (e.g., partial probe) were displayed. We also examined the accuracy of participants’ responses when determining the membership of a change across two separate groups of test items. We found that change detection was more accurate in the fixed-position condition than the random-position condition except relatively lower accuracy under the partial probe, and the membership determination responses were fairly accurate. The results indicate that the selective access to spatio-temporal information that are accurately represented in VWM in an integrated fashion can lead to indiscriminate retrieval of memory items and consequently can cause a potential interference against VWM performance.

keywords
시각작업기억, 통합적 표상, 맥락정보, 선택적 접근, visual working memory, integrated representation, contextual information, selective access

Reference

1.

현주석. (2009a). 기억 표상과 지각적 입력 간 비교 과정을 통해 본 시각작업기억 표상의 특성. 한국심리학회지: 인지 및 생물, 21(4), 265-282.

2.

현주석. (2009b). 시각작업기억과 지각입력 간 비교 처리 과정에서의 선별적 변화 탐지의 특성. 한국심리학회지: 인지 및 생물, 21(3), 147-166.

3.

Agam, Y., Hyun, J.-S., Danker, J. F., Zhou, F., Kahana, M., & Sekuler, R. (2009). Early Neural Signature of visual short-term memory. NeuroImage, 44(2), 531-536.

4.

Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423.

5.

Deubel, H., Schneider, W. X., & Bridgemen, B. (2002). Transsaccadic memory of position and form. Progress in Brain Research, 140, 165-180.

6.

Eriksen, C. W. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2, 101-118.

7.

Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory in human cognition: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137(1), 163-181.

8.

Hyun, J.-S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison process of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140-1160.

9.

Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 23(3), 420-456.

10.

Irwin, D. E. (1992). Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 307-317.

11.

Irwin, D. E. (1992). Perceiving an integrated visual world. In D. E. Meyer & S. Kornblum (Eds.), Attention and Performance XIV: Synergies in Experimental Psycholoyg, Artificial Intelligence, and Cognitive Neuroscience (pp.121-142). Cambridge, MA: MIT Press.

12.

Jaswal, S., & Logie, R. H. (2011). Configural encoding in visual feature binding. Journal of Cognitive Psychology, 23(5), 586-603.

13.

Jiang, Y., Chun, M. M., & Olson, I. R. (2004). Perceptual grouping in change detection. Perception and Psychophysics, 66, 446-453.

14.

Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory & Cognition, 2, 683-702.

15.

Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.

16.

Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review, 1(4), 476-490.

17.

Logie, R. H., Brockmole, J., & Jaswal, S. (2011). Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color. Memory & Cognition, 39(1), 24-36.

18.

Luck, S. J. (2008). Visual short-term memory. In S. J. Luck & A. Hollingworth (Eds.), Visual Memory: Oxford University Press.

19.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

20.

MacLeod, C. M. (1991). Half a century of research on the Stroop effect. Psychological Bulletin, 109(2), 163-203.

21.

Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception and Psychophysics, 49, 270-288.

22.

Rock, I., & Mack, A. (1994). Attention and perceptual organization. In S. Ballesteros (Ed.), Cognitive approaches to human perception (pp.23- 41). Hillsdale, NJ, USA: Lawrence Erlbaum Associates, Inc.

23.

Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652-654.

24.

Treisman, A., & Zhang, W. (2006). Location and binding in visual working memory. Memory & Cognition, 34, 1704-1719.

25.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92-114.

26.

Wertheimer, M. (1924/1950). Gestalt theory. In W. D. Ellis (Ed.), A sourcebook of Gestalt psychology (pp.1-11). New York: The Humanities Press.

27.

Wheeler, M., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48-64.

28.

Woodman, G. F., & Vecera, S. P. (2011). The cost of accessing an object's feature stored in visual working memory, Visual Cognition, 19 (1), 1-12.

29.

Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin & Review, 10, 80-87.

30.

Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object's features in visual working memory. Psychonomic Bulletin & Review, 15(1), 223-229.

31.

Woodman, G. F., Vogel, E. K., & Luck, S. (2012). Flexibility in visual working memory: Accurate change detection in the face of irrelevant variations in position. Visual Cognition, 20(1), 1-28.

32.

Xu, Y. (2002). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 28, 458-468.

33.

Xu, Y. (2004). An Object Benefit for Encoding Two Within-Dimension Features in Visual Short Term Memory. Paper presented at the 45th Annual Meeting of the Psychonomic Society, Minneapolis, MN.

34.

Xu, Y. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91-95.

35.

Yin, J., Zhou, J., Xu, H., Liang, J., Gao, Z., & Shen, M. (2012). Does high memory load kick task-irrelevant information out of visual working memory? Psychonomic Bulletin & Review, 19, 218-224.

36.

Zhang, W., & Luck, S. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20(4), 423-428.

37.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233-235.

The Korean Journal of Cognitive and Biological Psychology