바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

생물형 운동(Biological motion): 지각과정의 특징, 신경학적 기제 및 임상적 응용 가능성

Biological Motion: Perceptual Processing, Neural Mechanisms and Clinical Application

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2012, v.24 no.4, pp.357-392
https://doi.org/10.22172/cogbio.2012.24.4.004
김제중 (덕성여자대학교)

초록

생물형 운동(biological motion, 이하 BM)은 일반적인 운동과 다른, 동물이나 인간의 특징적인 운동을 말한다. 포유류의 시각체계는 운동자극에 대단히 민감하며, 생물형 운동자극 역시 매우 신속하고 효율적으로 탐지한다. 이와 함께, 인간의 지각 및 인지과정은 생물형 운동자극으로부터 정서적, 사회적 의미를 지닌 정보까지도 처리한다. 따라서 생물형운동의 정확한 지각은 동물들의 경우 생존을 위해 필수적인 능력이며, 인간에게 있어서는 사회적 기능의 습득 및 타인과의 상호작용을 위한 매우 중요한 능력이라 할 수 있다. Johansson(1973)의 고전적 실험 이후로 현재까지, 일반 운동자극과 차이를 보이는 BM자체의 고유 운동 패턴의 지각 과정에 대한 연구들 및 기저의 신경학적 기제를 밝히려는 연구들이 다양한 정신물리학적 방법과 뇌 영상법을 이용하여 이루어져 왔다. 최근에는 인지 기능 및 사회적 기능에 결함을 가진 정신 병리 환자들을 대상으로, 이들의 BM지각 연구를 통해 시지각과 상위 인지, 사회적 기능간의 관계를 밝히려는 연구들도 진행되어 오고 있다. 본 개관논문에서는 BM자극의 특징과 지각적 처리 기제, 현재까지 밝혀진 신경학적 기제 및 임상 장면에서의 연구 성과들을 선별하여 소개하고 그 응용 가능성에 대해 논의하였다.

keywords
Biological motion, Visual perception, Point-light display, Posterior superior temporal sulcus (pSTS), Psychopathology, Social functioning, 생물형 운동(BM), 시지각, 점광자극, 후부상측두구(pSTS), 정신병리, 사회기능

Abstract

The human visual system is extremely sensitive to motion stimuli. Especially when motion signals carry complex movements generated by animals or humans, most people are readily capable of extracting information of perceptual, psychological, and even social implications. Therefore, the visual recognition of such ‘biological motion’ is not only crucial for survival, but also important for developing social skills and adaptive behaviors. Considering this importance, several past studies have revealed some unique characteristics of biological motion stimuli, perceptual processing of biological motion and its underlying neural mechanisms using various psychophysical methods and brain-imaging techniques. More recent studies expanded this issue to examine people with mental illness exhibiting social dysfunctions, raising the question of whether biological motion perception could serve as an endophenotypic marker of impaired social cognition. This article reviews those advances and suggests possible future investigations and clinical application.

keywords
Biological motion, Visual perception, Point-light display, Posterior superior temporal sulcus (pSTS), Psychopathology, Social functioning, 생물형 운동(BM), 시지각, 점광자극, 후부상측두구(pSTS), 정신병리, 사회기능

참고문헌

1.

Annaz, D., Remington, A., Milne, E., Coleman, M., Campbell, R., Thomas, M. S., & Swettenham, J. (2010). Development of motion processing in children with autism. Developmental Science, 13, 826-838.

2.

Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence threshold in autism spectrum disorders. Neuropsychologia, 47, 3023-3029.

3.

Baron-Cohen, S. (1991). Do people with autism understand what causes emotion? Child Development, 62, 385-395.

4.

Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind. Cambridge, MA: Bradford/MIT press.

5.

Baron-Cohen, S., Wheelwright, S., Hill, J, Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” Test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Pschology and Psychiatry, and Allied Disciplines, 42, 241-251.

6.

Batelli, L., Cavanagh, P., & Thornton, I. M. (2003). Perception of biological motion in parietal patients. Neuropsychologia, 41, 1808-1816

7.

Baxter, L. R. Jr., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Schwartz, J. M.,& Selin, C. E. (1987). Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Archives of General Psychiatry, 44, 211-218.

8.

Baxter, L. R. Jr., Schwartz, J. M., Mazziotta, J. C., Phelps, M. E., Pahl, J. J., Guze, B. H., & Fairbanks, L. (1988). Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. American Journal of Psychiatry, 145, 1560-1563.

9.

Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). fMRI responses to video and point-light displays of moving humans and manipulatable objects. Journal of Cognitive Neuroscience, 15, 991-1001.

10.

Beintema, J. A., Georg, K., & Lappe, M. (2006). Perception of biological motion from limited lifetime stimuli. Perception and Psychophysics, 68, 613-624.

11.

Beintema, J. A., & Lappe, M. (2002). Perception of biological motion without local image motion. Proceedings of the National Academy of Sciences of the United States of America, 99, 5661-5663.

12.

Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5, 221-225.

13.

Benkelfat, C., Nordahl, T .E., Semple, W. E., King, A. C., Murphy, D. L., & Cohen, R. M. (1990). Local cerebral glucose metabolic rates in obsessive-compulsive disorder patients treated with clomipramine. Archives of General Psychiatry, 47, 840-848.

14.

Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47-73.

15.

Blake, R., Turner, L. M., Smoski, M. J., Pozdel, S. L., & Stone, W .L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14, 151-157.

16.

Bobick, A. F. (1997). Movement, activity and action: the role of knowledge in the perception of motion. Philosophical Transaction of the Royal. Society of London. B. 352, 1257-1265.

17.

Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16, 3737-3744.

18.

Brebion, G., Ohlsen, R. I., Pilowsky, L. S., & David, A. S. (2008). Visual hallucinatinos in schizophrenia: confusion between imagination and perception. Neuropsychology, 22, 383-389.

19.

Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 369- 384.

20.

Brune, M. (2003). Theory of mind and the role of IQ in chronic disorganized schizophrenia. Schizophrenia Research, 60, 57-64.

21.

Bystritsky, A., Liberman, R. P., Hwang, S, Wallace, C. J., Vapnik, T., Maindment, K., & Saxena, S. (2001). Social functioning and quality of life comparisons between obsessive- compulsive and schizophrenic disorders. Depression and Anxiety, 14, 214-218.

22.

Bystritsky, A., Saxena, S., Maindment, K., Vapnik, T., Tarlow, G., & Rosen, R. (1999). Quality of life changes in treatment-resistant OCD. Psychiatric Services, 50, 412-413.

23.

Calvert, G. A. Bullmore, E. T., Brammer, M. J., Campbell, R., Williams, S. C. R., McGuire, P. K., Woodruff, P. W., Iversen, S. D., & David, A .S. (1997). Activation of auditory cortex during silent lipreading. Science, 276, 593-595.

24.

Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all: Configural effects in action observation. Psychological Research, 74, 400-406.

25.

Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 1243-1249.

26.

Castelli, F., Frith, C., Happe, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the atrribution, Brain, 125(Pt 8), 1839-4.

27.

Cavanagh, P. (1991). Short-range vs long-range motion: not a valid distinction. Spatial Vision, 5, 303-309.

28.

Cavanagh, P., Labianca, A., & Thornton, I. M. (2001). Attention-based visual routines: Sprites. Cognition, 80, 47-60.

29.

Chang, D. H. F., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision 9(5):8, 1-10.

30.

Chatterjee, S. H., Freyd, J. J., & Shiffrar, M. (1996). Cnofigural processing in the perception of apparent biological motion. Journal of Experimental Psychology: Human Perception and Performance, 22, 916-929.

31.

Chen, Y., Levy, D. L., Sheremata, S., & Holzman, P. S. (2004). Compromised late-stage motion processing in schizophrenia. Biological Psychiatry, 55, 834-841.

32.

Chen, Y., Norton, D., & Ongur, D. (2008). Altered center-surround motion inhibition in schizophrenia. Biological Psychiatry, 64, 74-77.

33.

Chen, Y., Palafox, G. P., Nakayama, K., Levy, D. L., Mathysse, S., & Holzman, P. S. (1999). Motion perception in schizophrenia. Archives of General Psychiatry, 56, 149-154.

34.

Chen, Y., Nakayama, K., Levy, D., Mattysse, S., & Holzman, P. S. (2003). Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophrenia Research, 61, 215-227.

35.

Chen, Y., Bidwell, L. C., & Holzman, P. S. (2005). Visual motion integration in schizophrenia patients, their first-degree relatives, and patients with bipolar disorder. Schizophrenia Research, 74, 271-281.

36.

Choi, J. S., Kim, H., Yu, S. Y., Ha, T. H., Chang, J. H., Kim, Y. Y., Shin, Y. W., & Kwon, J. S. (2006). Morphometric alternations of anterior superior temporal cortex in obsessive-compulsive disorder. Depresstion and Anxiety, 23, 290-296.

37.

Clementz, B. A., Farber, R. H., Lam, M. N., & Swerdlow, N. R. (1996). Ocular motor responses to unpredictable and predictable smooth pursuit stimuli among patients with obsessive-compulsive disorder. Journal of Psychiatry and Neuroscience, 2, 21-28.

38.

Corcoran, R., Mercer, G., & Frith, C. D. (1995). Schizophrenia, symptomatology and social inference: investigating “theory of mind” in people with schizophrenia. Schizophrenia Research, 17, 5-13.

39.

Cottraux, J., Cerard, D., Cinotti, L., Froment, J. C., Deiber, M. P., LeBars, D., Galy, G., Millet, P., Labbe, C., Lavenne, F., Bouvard, M., & Mauguiere, F. (1996). A controlled positron emission tomography study of obsessive and neutral auditory stimulation in obsessive- compulsive disorder with checking rituals. Psychiatry Research, 60, 101-112.

40.

Coway, A., & Vaina, L. M. (2000). Blindeness to form from motion despite intact static form perception and motion detection. Neuropsychologia, 38, 566-578.

41.

Cutting, J. E., & Kozlowski, L. T. (1977). Recognition of friends by their walk: gait perception without familiarity cues. Bulletin of the Psychonomic Society, 9, 353-356.

42.

Cutting, J. E., Moore, C., & Mossison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44, 339-347.

43.

Dittrich, W. (1993). Action categories and the perception of biological motion. Perception, 22, 15-22.

44.

Dittrich, W. H., Troscianko, T., Lea S. E. G., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727-738.

45.

Downing, P., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293, 2470-2473.

46.

Edwards, J., Pattison, P. E., Jackson, H. J., & Wales, R. J. (2001). Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophrenia Research, 48, 235- 53.

47.

Fox, R., & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218, 486-487.

48.

Frith, C. D., & Corcoran, R. (1996). Exploring “theory of mind” in people with schizophrenia. Psychological Medicine, 26, 521-530.

49.

Frith, C. D., & Frith, U. (1999). Interacting minds - A biological basis. Science, 286, 1692-1695.

50.

Gaebel, W., & Wolwer, W. (1992). Facial expression and emotinoal face recognition in schizophrenia and depression. European Archives of Psychiatry and Clinical Neuroscience, 242, 46-52.

51.

Gallagher, H. L., Happe, F., Brunswick, N.,Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38, 11-21.

52.

Garcia, J. O., & Grossman, E. D. (2008). Necessary but not sufficient: Motion perception is required for perceiving biological motion. Vision Research, 48, 1144-1149.

53.

Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179-192.

54.

Gilmore, G. C., Wenk, H. E., Baylor, L. A., & Stuve, T. A. (1992). Motion perception and aging. Psychology and Aging, 7, 654-670.

55.

Gilaie-Dotan, S., Bentin, S., Harel, M., Rees, G., & Saygin, A. P. (2011). Normal form from biological motion despite impaired ventral stream function. Neuropsychologia, 49, 1033- 1043.

56.

Grady, C. L., & Keightley, M. L. (2002). Studies of altered social cognition in neuropsychiatric disorders using functional neuroimaging. Canadian Journal of Psychiatry, 47, 327-336.

57.

Grafton, S. T., Arbib, M. A., & Rizzolatti, G. (1996). Localization of grasp representation in humans by positron emission tomography: 2. Observation compared with imagination. Experimental Brain Research, 112, 103-111.

58.

Green, M. F., Nuechterlein, K. H., & Mintz, J. (1994a). Backward masking in schizophrenia and mania: I. Specifying a mechanism. Archives of General Psychiatry, 51, 939-944.

59.

Green, M. F,. Nuechterlein, K. H., & Mintz, J. (1994b). Backward masking in schizophrenia and mania: II. Specifying the visual channels. Archives of General Psychiatry, 51, 945-951.

60.

Grezes, J., Costes, N., & Decety, J. (1998). Top-down effect of strategy on the perception of human biological motion: a PET investigation. Cognitive Neuropsychology, 15, 553- 582.

61.

Grezes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions? Neuroimage, 13, 775-785.

62.

Grossman, E. D., Battelli, L. & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perceptionbiological motion. Vision Research, 45, 2847-2853.

63.

Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41, 1475- 1482

64.

Grossman, E. & Blake, R. (2002). Brain Areas Active during Visual Perception of Biological Motion. Neuron, 35, 1157-1165.

65.

Grossman, E. D., Blake, R & Kim, C-Y. (2004) Learning to see biological motion: Brain activity parallels. Journal of Cognitive Neuroscience, 16, 1669-1679.

66.

Grossman, E,. Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711-720.

67.

Grossman, E. D., Jardine, N. L., & Pyles, J. A. (2010). fMR-adaptation reveals invariant coding of biological motion on the human STS. Frontiers in Human Neuroscience, 4, 1-17.

68.

Hirai, M., & Kakigi, R. (2009). Differential orientation effect in the neural response to interacting biological motion of two agents. BMC Neuroscience, 10:39.

69.

Hiris, E., Krebeck, A., Edmonds, J., & Stout, A. (2005). What learning to see arbitrary motion tells us about biological motion perception. Journal of Experimental Psychology: Human Perception and Performance 31, 1096-1106.

70.

Hoffman, E. A., Haxby, J. V. (2000). Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 3, 80-84.

71.

Howard, R. J., Brammer, M., Wright, I., Woodruff, P. W., Bullmore, E. T., & Zeki, S. (1996). A direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain. Current Biology, 6, 1015-1019.

72.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160, 106-154.

73.

Hubert, B., Wicker, B., Moore, D. G., Monfardini, E., Duverger, H., Da Fonsega, D., & Deruelle, C. (2007). Brief report: recognition of emotional and non-emotional biological motion in individuals with austistic spectrum disorders. Journal of Autism and Developmental Disorders, 37, 1386-1392.

74.

Insel, T. R. (1992). Toward a neuroanatomy of obsessive-compulsive disorder. Archives of General Psychiatry, 49, 739-744.

75.

Jacobs, A., Pinto, J., & Shiffrar, M. (2004). Experience, context and the visual perception of human movement. Journal of Expermental Psychology: Human Perception and Performance, 30, 1-14.

76.

Jackson, S. & Blake, R. (2010). Neural integration of information specifying human structure from form, motion and depth. Journal of Neuroscience, 30, 838-848.

77.

Jastorff, J., Kourtzi, Z., & Giese, M. A. (2009). Visual learning shapes the processing of complex movement stimuli in the human brain. Journal of Neuroscience, 29, 14026-14038.

78.

Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201-211.

79.

Jokisch, D., Troje, N. F., Koch, B., Schwartz, M., & Daum, I. (2005). Differential involvement of the cerebellum in biological and coherent motion perception. European Journal of Neuroscience, 21, 3439-3446.

80.

Jung, W. H., Gu, B. M., Kang, D. H., Park, J. Y., Yoo, S. Y., Choi, C. H., Lee, J. M., & Kwon, J. S. (2009). BOLD response during visual perception of biological motion in obsessive-compulsive disorder: an fMRI study using the dynamic point-light animation paradigm. European Archives of Psychiatry and Clinical Neuroscience, 259, 46-54.

81.

Kaiser, M. D., Hudac, C. M., Shultz, S., Lee, S. M., Cheung, C., Berken, A. M., Deen, B., Pitskel, N. B., Sugrue, D. R. Voos, A. C., et al. (2010). Neural signatures of autism. Proceedings of the National Academy of Sciences of the United States of America, 107, 21223- 21228.

82.

Kang, D. H., Kim, J. J., Choi, J. S., Kim, Y. I., Kim, C. W., Youn, T., Han, M. H., Chang, K. H., & Kwon, J. S. (2004). Volumetric investigation of the frontal-subcortical circuitry in patients with obsessive-compulsive disorder. Journal of Neuropsychiatry and Clinical Neuroscience, 16, 342-349.

83.

Kim, J., Blake, R., Park, S., Shin, Y. W., Kang, D. H., & Kwon, J. S. (2008). Selective impairment in visual perception of biological motion in obsessive-compulsive disorder. Depression and Anxiety, 25:E15-E25.

84.

Kim, J., Doop, M. L., Blake, R., & Park, S. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77, 299-307.

85.

Kim, J., Park, S., & Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: A behavioral and fMRI study. PLos ONE 6:e19971.

86.

Klin, A., & Jones, W. (2008). Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Developmental Science, 11, 40-46.

87.

Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 459, 257-261.

88.

Kohler, C. G., Bilker, W., Hagendoorn, M., Gur, R. E. & Gur, R. C. (2000). Emotion recognition deficit in schizophrenia: association with symptomatology and cognition. Biological Psychiatry, 48, 127-136.

89.

Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience, 12, 48-55.

90.

Lange, J., & Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26, 2894- 2906.

91.

Lange, J., & Lappe, M. (2007). The role of spatial and temporal information in biological motion perception. Advances in Cognitive Psychology, 3, 419-428.

92.

Lencer, R., Trillenberg, P., Trillenberg-Krecker, K., Junghanns, K., Kordon, A., Broocks, A., Hohagen, F., Heide, W., & Arolt, V. (2004). Smooth pursuit deficits in schizophrenia, affective disorder and obsessive-compulsive disorder. Psychological Medicine, 34, 451-460.

93.

Li, C. S. (2002). Impaired detection of visual motion in schizophrenia patients. Progress in Neuropsychopharmacology and Biological Psychiatry 26, 929-934.

94.

Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from thier movement. Journal of Experimental Psychology: Human Perception and Performance 31, 210-220.

95.

Lu, H. (2010). Structural processing in biological motion perception. Journal of Vision 10(12):13, 1-13.

96.

MacArthur, L. Z., & Baron, M. K. (1983). Toward an ecological theory of social perception. Psychological Review, 90, 215-238.

97.

Manera, V., Becchio, C., Shouten, B., Bara, B. G., & Verfaillie, K. (2011). Communicative interactions improve visual detection of biological motion. PLos ONE 6(1):e14594.

98.

Marr, D., & Vaina, L. (1982). Representation and recognition of the movements of shape. Proceedings of the Royal Society of London. Series B, 214, 501-524.

99.

Mather, G., Radford, K., & West, S. (1992). Low level visual processing of biological motion. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological character. Royal Society (Great Britain), 249, 149-155.

100.

McGuire, P. K., Bench, C. J., Frith, C. D., Marks, I. M., Frackowiak, R. S., Dolan, R. J. (1994). Functional neuroanatomy of obsessive- compulsive phenomena. British Journal of Psychiatry, 164, 459-468.

101.

McLeod, P., Dittrich, W., Driver, J., Perrett, D., & Zihl, J. (1996). Preserved and impaired detection of structure from motion by a ‘motion bline’ patient. Visual Cognition, 3, 363-391.

102.

Michels, L., Kleiser, R., de Lussanet M. H. E., Seitz, R. J., & Lappe, M. (2009). Brain activity for peripheral biological motion in the posterior superior temporal gyrus and the fusiform gyrus: Dependence on visual hemifield and view orientation. NeuroImage, 45, 151-159.

103.

Michels, L., Lappe, M., & Vaina, L. M. (2005). Visual areas involved in the perception ofmovement from dynamic form analysis. NeuroReport, 16, 1037-1041.

104.

Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 43, 255-263.

105.

Milner, A. D., & Goodale, M. A. (1993). A visual pathways to perception and action. Progress of Brain Research, 95, 317-337.

106.

Mitkin, A. A., & Pavlova, M. A. (1990). Changing a natural orientation: recognition of biological motion pattern by children and adults. Psychologiesche Beitrage, 32, 28-35.

107.

Moore, D. G., Hobson, R. P., & Lee, A. (1997). Components of person perception: an investigation with autistic, non-autistic retarded and typically developing children and adolescents. British Journal of Developmental Psychology, 15, 401-423.

108.

Muthukumaraswamy, S. D., Johnson, B. W., McNair, N. A. (2004). Mu rhythm modulation during observation of an object- directed grasp. Cognitive Brain Research, 19, 195-201.

109.

Neri, P., Morrone, C., & Burr, D (1998). Seeingbiological motion. Nature, 395, 894-896.

110.

Neri, P., Luu, J. Y., & Levi, D. M. (2006). Meaningful interactions can enhance visual discrimination of human agents. Nature Neuroscience, 9, 1186-1192.

111.

Neville, H. J., Bavelier, D., Corina, D., Rauschecker, J., Karni, A., Lalwani, A., Braun, A., Clark, V., Jezzard, P., & Turner, R. (1998). Cerebral organization for language in deaf and hearing subjects: biological constraints and efects of experience. Proceedings of the National Academy of Sciences of the United States of America. 95, 922-929.

112.

Norman, J. F., Payton, S. M., Long, J. R., & Hawkes, L. M. (2004). Aging and perception of biological motion. Psychology and Aging, 19, 219-225.

113.

Norman, J. F., Ross, H. E., Hawkes, L. M., & Long, J. R. (2003). Aging and the perception of speed. Perception, 32, 85-96.

114.

Oram, M., & Perrett, D. (1994). Responses of anterior superior temporal polysensory (STPa) neurons to ‘biological motion’ stimuli. Journal of Cognitive Neuroscience, 6, 99-116.

115.

O'Rourke, J., & Badler, N. (1980). Model-based image analysis of human motion using constraint propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 522-536.

116.

Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49, 975-982.

117.

Park, S., & Holzman, P. S. (1993). Association of working memory deficit and eye tracking dysfunction in schizophrenia. Schizophrenia Research, 11, 55-61.

118.

Parron, C., Da Fonsega, D., Santos, A., Moore, D. G., Monfardini, E., & Deruelle, C. (2008). Recognition of biological motion in shilcren with autistic spectrum disorders. Autism, 12, 2161-2274.

119.

Pavlova, M., & Sokolov, A. (2000). Orientation specificity in biological motion perception. Perception and Psychophysics, 62, 889-899.

120.

Pavlova, M., & Sokolov, A. (2003). Prior knowledge about display inversion in biological motion perception. Perception, 32, 937-946.

121.

Peelen, M. V., & Downing, P. E. (2005). Selectivity for the human body in the fusiform gyrus. Journal of Neurophysiology, 93, 603-608.

122.

Peelen, M. V., Wiggett, A. J., & Downing, P. E. (2006). Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron, 49, 815-822.

123.

Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: controlling for meaningful coherent motion. Journal of Neuroscience, 23, 6819-6825.

124.

Pelphrey, K. A., Morris, J. P., Michelich, C. R., Allison, T., & McCarthy, G. (2005). Functional anatomy of biological motion perception in posterior temporal cortex: an fMRI study of eye, mouth, and hand movements. Cerebral Cortex, 15, 1866-1876.

125.

Perrett, D. I. Rolls, E. T., & Caan, W. (1982). Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47, 329-342.

126.

Perrett, D. I., Smith, P., Mistlin, A., Chitty, A., Head, A., Potter, D. D., Broennimann, R., Milner, A. D., & Jeeves, M. A. (1985). Visual analysis of body movements by neurons in the temporal cortex of the macaque monkey: a preliminary report. Behavior and Brain Research, 16, 153-170.

127.

Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A. (2005). Specificity of regions processing biological motion. European Journal of Neuroscience, 21, 2864-2875.

128.

Pfurtscheller, G., Bruner, C., Schlogl, A., Lopes da Silva, F. H. (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage, 31, 153-159.

129.

Phillips, M. L., & David, A. S. (1997). Viewing strategies for simple and chimeric faces: An investigation of perceptual bias in normals and schizophrenic patients using visual scan paths. Brain and Cognition, 35, 225-238.

130.

Pilz, K. S., Bennett, P. J., & Sekuler, A. B. (2010). Effects of aging on biological motion discrimination. Vision Research, 50, 211-219.

131.

Puce, A., & Allison, T. (1999). Differential processing of mobile and static faces by temporal cortex. NeuroImage, 9, 5801.

132.

Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. Journal of Neuroscience, 18, 2188- 2199.

133.

Reed, C. L., Stone, V. E., Bozova, S., & Tanaka, J. (2003). The body-inversion effect. Psychological Science, 14, 302-308.

134.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition. Nature Neuroscience, 2, 1019-1025.

135.

Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representation in humans by positron emission tomography: 1. Observation versus execution. Expreimental Brain Research, 111, 246-252.

136.

Rizzolatti G, & Craighero L. (2004). The mirror- neuron system. Annual Review of Neuroscience. 27, 169-92

137.

Rizzolatti, G., Fogassi, L., & Gallese, V.(2001). Neurophysiological mechanisms underlying the understanding and imatation of action. Nature Reviews Neuroscience, 2, 661-670.

138.

Rolls, E. T., & Milward, T. A. (2000). A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Computation, 12, 2547-2572.

139.

Santi, A., Servos, P., Vatikiotis-Bateson, E., Kuratate, T., & Munhall, K. (2003). Perceiving biologicaldissociating visible speech from walking. Journal of Cognitive Neuroscience,15, 800-809.

140.

Savage, C. R., Baer, L., Keuthen, N. J., Brown, H. D., Rauch, S. L., & Jenike, M. A. (1999) Organizational strategies mediate nonverbal memory impairment in obsessive-compulsive disorder. Biological Psychiatry, 45, 905-916.

141.

Saygin, A. P., Wilson, S. M., Hagler, D. J. Jr., Bates, E., & Sereno, M .I. (2004). Point-light biologicalperception activates human premotor cortex. Journal of Neuroscience, 24, 6181-6188.

142.

Schenk, T., & Zihl, J. (1997a). Visual motion perception after brain damage: I. Deficits in global motion perception. Neuropsychologia, 35, 1285-1297.

143.

Schenk, T., & Zihl, J. (1997b). Visual motion perception after brain damage: II. Deficits in form-from-motion perception. Neuropsychologia, 35, 1299-1310.

144.

Sekuler, R., Hutman, L. P., & Owsley, C. J. (1980). Human aging and spatial vision. Science, 209, 1255-1256.

145.

Senior, C., Barnes, J., Giampietro, V., Simmons, A., Bullmore, E. T., Brammer, M., & Davis, A. S. (2000). The functional neuroanatomy of implicit-motion perception or ‘representational momentum’. Current Biology, 10, 16-22.

146.

Servos, P., Osu, R., Santi, A., & Kawato, M. (2002). The neural substrates of biological motion perception: an fMRI study. Cerebral Cortex, 12, 772-782.

147.

Shenton, M. E., Kikinis, R., Jolesz, F. A., Pollak, S. D., LeMay, M., Wible, C. G., Hokama, H., Martin, B. S., Metcalf, D., Coleman, M., & McCarley, R. W. (1992). Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. The New England Journal of Medicine, 327, 604-612.

148.

Shiffrar, M., Lichtey, L., Heptulla & Chatterjee, S. (1997). The perception of biological motion across apertures. Perception & Psychophysics, 59, 51-59.

149.

Singh, F., Pineda, J., & Cadenhead, K. S. (2011). Association of impaired EEG mu wave suppression, negative symptoms and social functioning in biological motion processing in first episode of psychosis. Schizophrenia Research, 130, 182-186.

150.

Sokolov, A. A., Erb, M., Gharabaghi, A., Grodd, W., Tatagiba, M. S., & Pavlova, M. A. (2012). Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. NeuroImage, 59, 2824 -2830

151.

Spencer, J., O'Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion procesing in autism: Evidence for a dorsal stream deficiency. NeuroReport, 11, 2765 -2767.

152.

Stuve, T. A., Friedman, L., Jesberger, J. A., Gilmore, G. C., Strauss, M. E., & Meltzer, H. Y. (1997). The relationship between smooth pursuit performance, motion perception and sustained visual attention in patients with schizophrenia and normal controls. Psychological Medicine, 27, 143-152.

153.

Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13, 283-286.

154.

Swedo, S. E., Schapiro, M. B., Grady, C. L., Cheslow, D. L., Leonard, H. L., Kumar, A., Friedland, R., Rapaport, S. I., & Rapaport, J. L. (1989). Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Archives of General Psychiatry, 46, 518-523.

155.

Sweeney, J. A., Palumbo, D. R., Halper, J. P., Shear, M. K. (1992). Pursuit eye movement dysfunction in obsessive compulsive disorder. Psychiatry Research, 42, 1-11.

156.

Tadin, D., Kim, J., Doop, M.L., Gibson, C., Lappin, J. S., Blake, R., & Park, S. (2006). Weakened center-surround interactions in visual motion processing in schizophrenia. Journal of Neuroscience, 26, 11403-11412.

157.

Theusner, S., de Lussanet, M. H. E., & Lappe, M. (2011). Adaptation to biological motoin leads to a motion and a form aftereffect. Attention, Percepttion and Psychophysics, 73, 1843-1855.

158.

Thirkettle, M., Benton, C. P., & Scott-Samuel, N. E. (2009). Contributions of form, motion and task to biological motion perception. Journal of Vision 9(3):28, 1-11.

159.

Thompson, J. C., Clarke, M., Stewart, T., & Puce, A. (2005). Configural processing of biologicalin human superior temporal sulcus. Journal of Neuroscience, 25, 9059-9066.

160.

Thornton, I. M., Pinto, J., Shiffar, M. (1998). The visual perception of human locomotion. Cognitive Neuropsychology, 15, 535-552.

161.

Thornton, I. M., & Rensink, R. A. (2002). Active versus passive processing of biological motion. Perception, 31, 837-853.

162.

Thurman, S. M., Giese, M. A., & Grossman, E. D. (2010). Perceptual and computational analysis of critical features for biological motion. Journal of Vision, 10(12):15, 1-14.

163.

Todd, J. T. (1993). Perception of gait. Journal of Experimental Psychology: Human Perception and Performance, 9, 31-42.

164.

Troje, N. F. (2003). Reference frames for orientation anisotropies in face recognition and biological-motion perception. Perception, 32, 201-210.

165.

Troje, N. F. (2008). Biological motion perception. In A. Basbaum, et al. (Eds.), The senses: A comprehensive reference (pp.231-238). Oxford: Elsevier.

166.

Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector”? Current Biology, 16, 821-824.

167.

Ungerleider, L. G., Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4, 157-165.

168.

Ungerleider, L. G., Mishikin, M. (1982). in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W.), 549-586 (MIT Press, Cambridge, Massachusetts, 1982).

169.

Vaina, L. M., & Gross, C. G. (2004). Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. Proceedings of the National Academy of Sciences of the United States of America, 101, 16947-16951.

170.

Vaina, L. M., Le May, M., Bienfang, D. C., Choi, A. Y., & Nakayama, K.(1990). Intact ‘biological motion’ and ‘structure from motion’ perception in a patient with impaired motion mechanisms: a case study. Visual Neuroscience, 5, 353-69.

171.

Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J. W. (2001). Functional neuroanatomy of biological motion perception in humans. Proceedings of the National Academy of Sciences of the United States of America, 98, 11656-11661.

172.

van Boxtel, J. J. A., & Lu, H. (2011). Visual search by action category. Journal of Vision, 11(7):19, 1-14.

173.

Wheaton, K. J., Thompson, J., Syneniotis, A., Abbott, D., & Puce, A. (2004). Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. NeuroImage, 22, 277-88.

174.

Wicker, B., Michel, F., Henaff, M. A., & Decety, J. (1998). Brain regions in-in the perception of gaze: A PET study. NeuroImage, 8, 221- 227.

175.

Williams, L. M., Loughland, C. M., Gordon, E., & Davidson, D. (1999). Visual scanpaths in schizophrenia: is there a deficit in face recognition? Schizophrenia Research, 40, 189- 199.

176.

Yoon, J. M. D., & Johnson, S. C. (2009). Biological motion displays elicit social behavior in 12-month-olds. Child Development, 80, 1069- 1075

177.

Zigler & Levine (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96- 105.

한국심리학회지: 인지 및 생물