바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

The Psychologial Validity of Markov Assumption

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2013, v.25 no.1, pp.93-116
https://doi.org/10.22172/cogbio.2013.25.1.006

Abstract

What kind of information do people use to make predictions? The principle that causal Bayes nets suggest is that people follow structural constraints like the Markov principle. Previous studies have cast doubt on the psychological validity of the screening-off principle. I tested three hypotheses about how people used causal information to make predictions. Experiment 1 revealed that people violated the screening-off rule even when a causal structure was causally sufficient supporting the contradiction hypothesis (Walsh and Sloman, 2004). Experiment 2 controlled possible compounding in Experiment 1 but still reported the violation. Possible implications to the causal Bayes net formalism were discussed.

keywords
Markov assumption, Causal Bayes net, Contradiction, Causal inference, Screening-off rule, 인과 베이즈 모형, 마르코프 가정, 모순 가설, 인과 추론, 차단 규칙

Reference

1.

Ahn, W., Kalish, C. W., Medin, D. L., & Gelman, S. A. (1995). The role of covariation versus mechanism information in causal attribution. Cognition, 54(3), 299-352.

2.

Chaigneau, S.E., Barsalou, L.W., & Sloman, S. (2004). Assessing the causal structure of function. Journal of Experimental Psychology: General, 133, 601-625.

3.

Eberhardt, F., Glymour, C., Scheines, R. (2005). N-1 experiments suffice to determine the causal relations among n variables. Technical report, Carnegie Mellon University

4.

Fernbach, P. M. & Sloman, S. A. (2009). Causal learning with local computations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 678-693.

5.

Glymour, C. (2001). The mind’s arrows: Bayes nets and graphical causal models in psychology. Cambridge, MA: Bradford Books.

6.

Gopnik, A., & Schulz, L. (2004). Mechanisms of theory formation in young children. Trends in Cognitive Science, 8, 371-377.

7.

Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 1-30.

8.

Griffiths, T. L., & Tenenbaum, J. B. (2005). Structure and strength in causal induction. Cognitive Psychology, 51, 354–384.

9.

Griffiths, T. L., & Tenenbaum, J. B. (2009). Theory-based causal induction. 661-716.

10.

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), Cambridge handbook of computational cognitive modeling (pp. 59-100). Cambridge, MA: Cambridge University Press.

11.

Hausman, D. M., & Woodward, J. (1999). Independence, invariance and the causal Markov condition. British Journal for the Philosophy of Science, 50, 521-583.

12.

Keil, F. C. (2003). Folkscience: Coarse interpretations of a complex reality. Trends in Cognitive Science, 7, 368-373.

13.

Lagnado, D., & Sloman, S. A. (2004). The advantage of timely intervention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 856-876.

14.

Lagnado, D. A., Waldmann, M. R., Hagmayer, Y., & Sloman, S. A. (2007). Beyond covariation: Cues to causal structure. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 86-100). Oxford, England: Oxford University Press.

15.

Lombrozo, T. (2007). Simplicity and probability in causal explanation. Cognitive Psychology, 55, 232-257.

16.

Mayrhofer, R., Goodman, N. D., Waldmann, M. R., & Tenenbaum, J. B. (2008). Structured correlation from the causal background. In In B. C. Love, K. McRae, V. M. Sloutsky,(Eds.) Proceedings of the Thirtieth Annual Conference of the Cognitive Science Society (pp. 303-308). Austin, TX: Cognitive Science Society.

17.

Mayrhofer, R., Hagmayer, Y., & Waldmann, M., (2010) Agents and causes: A Bayesian error attribution model of causal reasoning. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 925-930). Austin, TX: Cognitive Science Society.

18.

Park, J. H & Sloman, S. A (under review). Structure is not Enough.

19.

Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge: Cambridge University Press.

20.

Rehder, B. (2003). A causal-model theory of conceptual representation and categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 1141-59.

21.

Rehder, B. (2009). Causal-based property generalization. Cognitive Science 33, 301-344.

22.

Rehder, B. (in prepration). Nonindependence in Human Causal Reasoning.

23.

Rehder, B., & Burnett, R. C. (2005).Feature inference and the causal structure of object categories. Cognitive Psychology, 50, 264-314.

24.

Reichenbach, H. (1956). The direction of time. Berkeley, CA: University of California Press.

25.

Sloman, S. A. (2005). Causal models; how people think about the world and its alternatives. New York: Oxford University Press.

26.

Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search. New York: Springer-Verlag.

27.

Waldmann, M. R., & Hagmayer, Y. (2005). Seeing versus doing: Two modes of accessing causal knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 216-227.

28.

Walsh, C. R., & Sloman, S. A. (2004). Revising causal beliefs. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum Associates.

29.

Walsh, C. & Sloman, S. A. (2008). Updating beliefs withcausal models: Violations of screening off. Gluck, M. A., Anderson, J. R , & Kosslyn, S. M. (Eds.). Memory and Mind: A Festschrift for Gordon H. Bower. New Jersey: Lawrence Erlbaum Associates.

The Korean Journal of Cognitive and Biological Psychology