바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Spatial attention allocation in retinal vs. spatial coordinate with and without referential background

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2014, v.26 no.3, pp.151-169
https://doi.org/10.22172/cogbio.2014.26.3.002



Abstract

This research tested the basis of spatial attention deployment. Spatial coordinate based on relative retinal position is called retinotopic coordinate and that based on objective spatial location of outer world is called spatiotopic coordinate. Golomb, Chun, & Mazer (2008) compared the use of these two coordinates in spatial attention allocation and concluded that retinotopic coordinate is the basis of spatial attention allocation in early visual information processing and spatiotopic coordinate is used only after retinotopic coordinate is updated. However, because their experiments used only dots and lines as stimuli in the absence of contextual information (e.g., background), retinotopic coordinate was the only representation readily accessible for spatial attention allocation. In this research, we hypothesized that background providing spatiotopic information will facilitate attention allocation based on the spatiotopic representation. To test this hypothesis, we replicated previous results using the stimuli in Golomb et al. (Expt. 1), and then provided background to test whether background is used as spatiotopic reference frame in spatial attention allocation (Expt. 2). The results of Experiments 1 and 2 are compared to examine spatial attention allocation in retinotopic vs. spatiotopic coordinates depending on presence or absence of background. Contrary to previous findings, in Expt. 2, retinotopic facilitation of attention allocation disappeared, indicating that previous experimental setting was favorable for the use of retinotopic spatial representation and that background can be used as spatiotopic reference frame for spatial attention deployment.

keywords
spatial attention, retinotopic coordinate, spatiotopic coordinate, 공간적 주의, 공간위상좌표, 망막위상좌표

Reference

1.

Awh, E., Jonides, J., & Reuter Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology, 24, 780-790.

2.

Baccino, T., Jaschinski, W., & Bussolon, J. (2001). The influence of bright background flicker during different saccade periods on saccadic performance. Vision Research, 41(28), 3909- 3916.

3.

Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299, 81-86.

4.

Brooks, B. A., Impelman, D. M., & Lum, J. T. (1980). luminance on visual sensitivity during saccadic eye movements. Experimental Brain Research, 40(3), 322-329.

5.

Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in cognitive sciences, 14(4), 147-153.

6.

Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., Linenweber, M. R., Petersen, S. E., Raichle, M. E., Van Essen, D. C., & Shulman, G. L. (1998). A common network of functional areas for attention and eye movements. Neuron, 21, 761-773.

7.

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, 34(4), 613- 617

8.

Duhamel J. R., Colby C. L., & Goldberg M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90-92.

9.

Duvel, H. (1995). Is saccadic adaptation context-specific? Studies in visual information processing, 6, 177-187.

10.

Eimer, M., Van Velzen, J., Gherri, E., & Press, C. (2007). ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention. Brain research, 1135, 154-166.

11.

Gardner, J. L., Merriam, E. P., Movshon, J. A., & Heeger, D. J. (2009). Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. Journal of neuroscience, 28(15), 3988-3999.

12.

Gersch, T. M., Kowler, E., & Dosher, B. (2004). Dynamic allocation of visual attention during the execution of sequences of saccades. Vision research, 44, 1469-1483.

13.

Golomb, J. D., Chun, M. M., & Mazer, J. A. (2008). The native coordinate system of spatial attention is retinotopic. Journal of neuroscience, 28(42), 10654-10662.

14.

Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & psychophysics, 57, 787- 795.

15.

Honda, H. (1995). Visual mislocalization in moving background and saccadic eye movement conditions. Studies in visual information processing, 6, 201-212.

16.

Irwin, D. E., & Gordon, R. D. (1998). Eye movements, attention and trans-saccadic memory. Visual cognition, 5, 127-155.

17.

Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual review of neuroscience, 23, 315- 341.

18.

Kastner, S., DeSimone, K., Konen, C. S., Szczepanski, S. M., Weiner, K. S., & Schneider, K. A. (2007). Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working memory tasks. Journal of neurophysiology, 97, 3495-3507.

19.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1-1.

20.

Kusunoki, M., & Goldberg, M. E. (2003). The time course of perisaccadic receptivefield shifts in the lateral intraparietal area of the monkey. Journal of neurophysiology, 89, 1519-1527.

21.

Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision research, 41, 3559-3565.

22.

Melcher, D., & Morrone, M. C. (2003). Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature neuroscience, 6(8), 877-811.

23.

Merriam, E. P., Genovese, C. R., & Colby, C. L. (2003). Spatial updating in human parietal cortex. Neuron, 39, 361-373.

24.

Merriam, E. P., Genovese, C. R., & Colby, C. L. (2007). Remapping in human visual cortex. Journal of neurophysiology, 97(2), 1738-1755.

25.

Nakamura, K., & Colby, C. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of the National Academy of Sciences, 99, 4026-4031.

26.

Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage, 11, 210-216.

27.

Schall, J. D. (2004). On the role of frontal eye field in guiding attention and saccades. Vision research, 44, 1453-1467.

28.

Sommer, M. A., & Wurtz, R. H. (2006). Influence of the thalamus on spatial visual processing in frontal cortex. Nature, 444, 374-377.

29.

Van der Stigchel, S., & Theeuwes, J. (2005). The influence of attending to multiple locations on eye movements. Vision research, 45, 1921-1927.

The Korean Journal of Cognitive and Biological Psychology