ISSN : 1226-9654
Patients with schizophrenia have difficulty processing visual motion signals including biological motion (BM). A recent fMRI study found altered activation within the posterior superior temporal sulcus in patients with schizophrenia during BM perception. In addition, some frontal areas including ventral premotor cortex are known to be involved in biological motion perception in healthy individuals. However, it is unknown whether patients with schizophrenia have abnormal brain functioning in frontal areas while perceiving biological motion. The present study examined frontal activation associated with biological motion perception in patients with schizophrenia and healthy controls with fMRI data. In healthy controls, a portion of the ventral premotor area and the inferior frontal gyri exhibited specific activation to biological motion stimuli, which was not observed in schizophrenia patients. A dorsal portion of the superior frontal cortex was activated when non-biological motion was misperceived as biological in healthy controls while overall activation level was lower in schizophrenia. Anterior parts of the prefrontal cortex showed suppression during biological motion perception task in healthy controls, whereas no specific activation was observed in the patients with schizophrenia. These results indicate that schizophrenia patients exhibit abnormal frontal brain activation relative to healthy controls in biological motion perception, suggesting altered activities in frontal areas including the mirror neuron system.
Allen, D. N., Gilbertson, M. W., van Kammen, D. P., Kelly, M. E., Gurklis, J. A. Jr., & Barry, E. J. (1997). Chronic haloperidol treatment does not affect structure of attention in schizophrenia. Schizophrenia Research, 25, 53-61.
American Psychiatric Association (1994). DSM-IV: Diagnostic and Statistical Manual of Mental Disorders (Ed. 4). Washington DC: American Psychiatric Press.
Andreason, N. C., & Olsen, S. (1982). Negative v positive schizophrenia. Definition and validation. Archives of General Psychiatry, 39, 789-794.
Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15, 991-1007.
Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5, 221-225.
Bezchlibnyk-Butler, K. Z., & Jeffris, J. J. (1999). Clinical handbook of psychotropic drugs, 9th edition. Hogrefe and Huber Publishers, Seattle.
Binkofski, F., & Buccino, G. (2006). The role of ventral premotorcortex in action execution and action understanding. Journal of Physiology-Paris, 99, 396-405.
Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47-73.
Boroojerdi, B., Topper, R., Foltys, H., & Meincke, U. (1999). Transcallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation. British Journal of Psychiatry, 175, 375-379.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 443-446.
Buccino, G., Binkofski, F., & Riggio, L. (2004). The mirror neuron system and action recognition. Brain and Language, 89, 370- 376.
Chen, Y., Grossman, E. D., Bidwell, L. C., Yurgelun-Todd, D., Gruber, S. A., Levy, D. L., Nakayama, K., & Holzman, P. S. (2008). Differential activation patterns of occipital and prefrontal cortices during motion processing: Evidence from normal and schizophrenic brains. Cognitive, Affective, & Behavioral neuroscience, 8, 293-303.
Chen, Y., Levy, D. L., Sheremata, S., Nakayama, K., Matthysse, S., & Holzman, P. S. (2003a). Effects on typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. American Journal of Psychiatry, 160, 1795-1801.
Chen, Y., Nakayama, K., Levy, D., Mattysse, S., & Holzman, P. S. (2003b). Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophrenia Research, 61, 215-227.
Chen, Y., Palafox, G. P., Nakayama, K., Levy, D. L., Mathysse, S., & Holzman, P. S. (1999). Motion perception in schizophrenia. Archives of General Psychiatry, 56, 149-154.
Cheng, K., Fujita, H., Kanno, I., Miura, S., & Tanaka, K. (1995). Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. Journal of Neurophysiology, 74, 413-427.
Crozier, S., Sirigu, A., Lehéricy, S., van de Moortele, P. F., Pillon, B., Grafman, J., Agid, Y., Dubois, B., & LeBihan, D. (1999), Distinct prefrontal activations in processing sequence at the sentence and script level: an fMRI study. Neuropsychologia, 37, 1469-1476.
Cutting, J. E., & Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cues. Bulletin of the Psychonomic Society, 9, 353-356.
Cutting, J. E., Moore, C., & Mossison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44, 339-347.
Daskalakis, Z. J., Christensen, B. K., Chen, R., Fitzgerald, P. B., Zipursky, R. B., et al. (2003). Effect of antipsychotics on cortical inhibition using transcranial magnetic stimulation. Psychopharmacology, 170, 255-262.
Davey, N. J., Puri, B. K., Lewis, S. W., & Ellaway, P. H. (1997). Effects of antipsychotic medication on electromyographic responses to transcranial magnetic stimulation of the motor cortex in schizophrenia. Journal of Neurology, Neurosurgery, and Psychiatry, 63, 468-473.
Dittrich, W. H., Troscianko, T., Lea S. E. G., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727-738.
Encicott, P. G., Hoy, K. E., Herring, S. E., Johnston, P. J., Daskalakis, Z. J., & Fitzgerald, P. B. (2008). Reduced motor facilitation during action observation in schizophrenia: a mirror neuron deficit? Schizophrenia Research, 102, 116-121.
Fitzgerald, P. B., Brown, T. L., Daskalakis, Z. J., & Kulkarni, J. (2002). A transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia. Psychiatry Research and Neuroimmunology, 114, 11-22.
Gilaie-Dotan, S., Kanai, R., Bahrami, B., Rees, G., & Saygin, A. P. (2013). Neuroanatomical correlates of biological motion detection. Neuropsychologia, 51, 457-463.
Green, M. F., Nuechterlein, K. H., & Mintz, J. (1994a). Backward masking in schizophrenia and mania: I. Specifying a mechanism. Archives of General Psychiatry, 51, 939-944.
Green, M. F,. Nuechterlein, K. H., & Mintz, J. (1994b). Backward masking in schizophrenia and mania: II. Specifying the visual channels. Archives of General Psychiatry, 51, 945-951.
Grèzes, J., Fonlupt, P., Bertenthal, B., Delon- Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions? NeuroImage, 13, 775-785.
Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41, 1475-1482.
Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35, 1157-1165.
Harrington, L., Siegert, R. J., & McClure, J. (2005). Theory of mind in schizophrenia: a critical review. Cogntive Neuropsychiatry, 10, 249-286.
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201-211.
Kim, J. (2012). Biological motion: Perceptual processing, neural mechanisms and clinical application. The Korean Journal of Cognitive and Biological Psychology, 24(4), 357-392.
Kim, J., Doop, M. L., Blake, R., & Park, S. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77, 299-307.
Kim, J., Matthews, N. L., & Park, S. (2010). An Event-Related fMRI Study of Phonological Verbal Working Memory in Schizophrenia. PLoS ONE, 5(8), e12068
Kim, J., Park, S., & Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: A behavioral and fMRI study. PLos ONE, 6: e19971.
Leslie, K. R., Johnson-Frey, S. H., & Grafton, S. T. (2004). Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage, 21, 601-607.
Li, C. S. (2002). Impaired detection of visual motion in schizophrenia patients. Progress in Neuropsychopharmacology & Biological Psychiatry, 26, 929-934.
Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from thier movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210-220.
MacArthur, L. Z., & Baron, M. K. (1983). Toward an ecological theory of social perception. Psychological Review, 90, 215-238.
McCormick, L. M., Brumm, M. C., Beadle, J. N., & Paradiso, S. (2012). Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Research: Neuroimaging, 201, 233-239.
Mehta, U. M., Thirthalli, Jl., Basavaraju, R., Gangadhar, B., & Pascual-Leone, A. (2014). Reduced mirror neuron activity in schizophrenia and its association with theory of mind deficits: Evidence from a transcranial magnetic stimulation study. Schizophrenia Bulletin, 40, 1083-1094.
Michels, L., Lappe, M., & Vaina, L. M. (2005). Visual areas involvedin the perception of human movement from dynamic form analysis. Neuroreport, 16, 1037-1041.
Neri, P., Morrone, C., & Burr, D (1998). Seeing biological motion. Nature, 395, 894-896.
Okugawa, G., Nobuhara, K., Minami, T., Takase, K., Sugimoto, T., Saito, Y., Yoshimura, M., & Kinoshita, T. (2006). Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: a diffusion tensor imaging study. Progress in Neuro-Psychopharmacology, 30, 1408-1412.
Overall, J. E., & Gorham, D. R. (1962). The brief psychiatric rating scale. Psychological Reports, 10, 799-812.
Pelli, D. G. (1997). The video toolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437-442.
Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23, 6819-6825.
Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A. (2005). Specificity of regions processing biological motion. European Journal of Neuroscience, 21, 2864-2875.
Pineda, J. A. (2008). Sensorimotor cortex as a critical componentof an ‘extended’ mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral and Brain Functions, 4:47. Doi: 10.1186/1744-9081-4-47
Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in human viewing eye and mouth movements. Journal of Neuroscience, 18, 2188- 2199.
Quintana, J., Davidson, T., Kovalik, E., Marder, S. R., & Mazziotta, J. C. (2001). A compensatory mirror cortical mechanism for facial affect processing in schizophrenia. Neuropsychopharmacology, 25, 915-924.
Raine,A. (1991). The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17, 556-564.
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661-670.
Santi, A., Servos, P., Vatikiotis-Bateson, E., Kuratate, T., & Munhall, K. (2003). Perceiving biological dissociating visible speech from walking. Journal of Cognitive Neuroscience, 15, 800-809.
Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130, 2452-2461.
Saygin, A. P., Wilson, S. M., Hagler, D. J. Jr. Bates, E., & Sereno, M. I. (2004). Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 24, 6181-6188.
Shamay-Tsoory, S. G., Shur, S., Barcai-Goodman, L., Medlovich, S., Harari, H., & Levkovitz, Y. (2007). Dissociation of cognitive from affetive components of theory of mind in schizophrenia. Psychiatry Research, 149, 11-23.
Singh, F., Pineda, J., & Cadenhead, K. S. (2011). Association of impaired EEG mu wave suppression, negative symptoms and social functioning in biological motion processing in first episode of psychosis. Schizophrenia Research, 130, 182-186.
Spencer, J. M., Sekuler, A. B., Bennett, P. J., & Christensen, B. K. (2013) Contribution of coherent motion to the perception of biological motion among persons with Schizophrenia. Frontiers in Psychology, 13;4: 507. doi: 10.3389/fpsyg.2013.00507
Spitzer, R. L., & Williams, J. D. W. (1985). Structured Clinical Interview for DSM III-R. New York State Psychiatric Institute Biomedical Research Division, New York.
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Thieme, New York.
Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing: a neurophysiological study. Neuron, 31, 155- 165.
Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J. W. (2001). Functional neuroanatomy of biological motion perception in humans. Proceedings of the National Academy of Sciences of the United States of America, 98, 11656-11661.
Volz, K. G., Schubotz, R. I., & von Cramon, D. Y. (2004). Why I am unsure? Internal and external attribution of uncertainty dissociated by fMRI. Neuroimage, 21, 848-857.
Volz, K. G., Schubotz, R. I., & von Cramon, D. Y. (2003). Predicting events of varying probability: uncertainty investigated by fMRI. NeuroImage, 19, 271-280.
Volz, K. G., Schubotz, R. I., & von Cramon, D. Y. (2005). Variants of uncertainty in decision-making and their neural correlates. Brain Research Bulletin, 67, 403-412.