ISSN : 1226-9654
본 연구는 단순 세부특징 및 결합 탐색 과제 수행 시, 탐색 배열 제시 직전에 주어지는 시간의 양이 표적에 대한 탐색 형판을 형성하는 데에 미치는 영향을 조사하였다. 이를 위하여 탐색 개시에 앞서 표적을 정의하는 사전단서들을 제공한 뒤 사전단서의 소멸 시점과 탐색 배열의 제시 시점간의 간격 즉 자극 간 지연 시간을 실험 1의 경우 50, 500 및 1500ms로, 실험 2에서는 100, 300, 500 및 700ms로 변화시켰다. 실험 1의 탐색 배열로는 색상 방위 막대 자극이 사용되었으며, 단일 세부특징 차원에 대한 탐색이 요구된 단순 세부특징 탐색 조건의 경우 자극 간 지연 시간의 변화에도 불구하고 반응시간의 변화가 크지 않았다. 반면 두 세부특징 차원에 대한 탐색이 요구된 결합 탐색 조건에서는 자극 간 지연 시간의 증가에 따라 탐색 수행이 점차 신속해지는 것이 관찰되었다. 실험 2에서는, 랜돌트 C (Landolt C) 자극을 사용한 결과 결합 탐색뿐만 아니라, 단순 세부특징 탐색 조건에 있어서도 자극 간 지연 시간의 증가에 따른 반응 시간의 감소가 나타났다. 특히 이러한 패턴은 단순 세부특징 탐색 조건의 경우 100ms과 300ms 구간 그리고 결합 탐색의 경우는 300ms과 500ms 구간에서 분명한 것으로 나타났다. 본 연구의 결과는 표적 형판을 구성하는 세부특징의 범주 및 그에 따른 복잡성이 효과적인 표적 형판을 형성하기 위한 최소 시한을 결정하며, 둘 이상의 세부특징에 대한 고려가 요구되는 결합 탐색 과제의 경우 적어도 300ms에서 500ms의 시간이 요구될 가능성을 시사한다.
This study investigated whether or not the length of the time that was given for forming a search target template could affect subsequent search performance in both simple feature search and conjunction search tasks. To accomplish this, we manipulated the inter-stimulus interval (ISI), the time interval between an offset of a pre-cue and subsequent onset of a search array, to 50ms, 500ms and 1500ms in Experiment 1, and to 100ms, 300ms, 500ms and 700ms in Experiment 2. In Experiment 1, the search RTs were rather constant despite the extended ISIs in both the color and orientation simple feature search conditions. However, the RTs became faster as the ISIs were extended in the color-orientation conjunction search condition. In Experiment 2, benefit of the extended ISIs were found in all search conditions when the orientation feature search task was replaced with a Landolt gap search task. Especially, the results showed that search could be faster if the ISIs are extended to maximum 300ms in the simple feature search, whereas if they are extended to maximum 500ms in conjunction search. These results indicate that the type of a target template formed by pre-cues can affect the minimum time to complete a subsequent search task.
Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental psychology: Human Perception and Performance, 21(1), 109.
Cepeda, N. J., Cave, K. R., Bichot, N. P., & Kim, M. S. (1998). Spatial selection via feature-driven inhibition of distractor locations. Perception & Psychophysics, 60(5), 727-746.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222.
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433-458.
Henderson, J. M., Weeks Jr, P. A., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25(1), 210.
Hoffman, J. E., & Nelson, B. (1981). Spatial selectivity in visual search. Perception & Psychophysics, 30(3), 283-290.
Hooge, I. T. C., & Erkelens, C. J. (1996). Control of fixation duration in a simple search task. Perception & Psychophysics, 58(7), 969-976.
Jolicœur, P., & Dell'Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36(2), 138-202.
Kim, M. S., & Cave, K. R. (1995). Spatial attention in visual search for features and feature conjunctions. Psychological Science, 6(6), 376-380.
Mannan, S. K., Kennard, C., Potter, D., Pan, Y., & Soto, D. (2010). Early oculomotor capture by new onsets driven by the contents of working memory. Vision Research, 50(16), 1590-1597.
Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243.
Schmidt, J., & Zelinsky, G. J. (2011). Visual search guidance is best after a short delay. Vision Research, 51(6), 535-545.
Shapiro, K. L., & Raymond, J. E. (1994). Temporal allocation of visual attention: Inhibition or interference? In D. Dagenbach & T. Carr (Eds.), Inhibitory processes in attention, memory, and language. Orlando, CA: Academic Press.
Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342-348.
Theeuwes, J., & Van der Burg, E. (2011). On the limits of top-down control of visual selection. Attention, Perception, & Psychophysics, 73(7), 2092-2103.
Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 40(2), 201-237.
Vickery, T. J., King, L. W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 8.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2005). Pushing around the locus of selection: Evidence for the flexible-selection hypothesis. Journal of Cognitive Neuroscience, 17(12), 1907-1922.
Wilschut, A., Theeuwes, J., & Olivers, C. N. (2013). The time it takes to turn a memory into a template. Journal of Vision, 13(3), 8.
Wolfe, J. M., Cave, K. R., & Franzel, S. K. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception & Performance, 15(3), 419-433.
Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44(12), 1411-1426.
Wolfe, J. M., Horowitz, T. S., Palmer, E. M., Michod, K. O., & Van Wert, M. J. (2010). Getting into guided search. Tutorials in Visual Cognition, 93-119.
Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuo- spatial working memory is occupied. Psychonomic Bulletin & Review, 11, 269-274.
Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212-215.
Wu, R., Scerif, G., Aslin, R. N., Smith, T. J., Nako, R., & Eimer, M. (2013). Searching for something familiar or novel: Top-Down attentional selection of specific items or object categories. Journal of Cognitive Neuroscience, 25(5), 719-729.