바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

3차원 깊이 변화 탐지과정에서 드러난 시야와 양안의 상호작용효과

Interaction Effect between Visual Field and Eye on 3-D Movement Perception

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2015, v.27 no.2, pp.151-168
https://doi.org/10.22172/cogbio.2015.27.2.004
문현호 (가톨릭대학교 심리학과)
남종호 (가톨릭대학교)

초록

시각 정보가 제시되는 눈과 좌우 시야의 위치를 조합하면 망막에서부터 형성되는 네 가지 시각경로를 분리하고 이를 행동적으로 측정할 수 있다. 본 연구는 3차원 깊이 지각 과정에 눈과 시야, 좌우뇌가 차별적인 기여를 할 가능성을 구분해서 알아보고자 하였다. 이를 위하여 두 눈에서 오는 정보를 모두 필요로 하는 깊이 변화 판단 과제를 구성하였다. 좌우 시야의 위치와 제시되는 눈의 조건을 독립적으로 조정하여 깊이 변화를 탐지하기 위한 정보를 관찰자에게 체계적으로 제공하였다. 정보가 조합되는 조건에 따라 수행차이가 있는지를 반응시간으로 측정하였다. 실험 참가자는 가상의 두 원주(작은 원, 3.43°; 큰 원 8.13°) 상에 제시된 12개의 자극 중 어느 하나에서 깊이 변화가 탐지되면 다가오거나 멀어지는 변화의 방향에 따라 적합한 반응을 하도록 하였다. 결과로는 자극의 공간 이동 방향, 깊이 탐지 정보가 제시되는 눈과 시야에 따라 탐지 수행이 달라지는 것으로 나타났다. 또한 변화의 방향에 대한 좌우 손 반응 요구를 상호 뒤바꾸는 두 실험조건에서 수행 안정성의 차이가 관찰되었다. 이런 결과는 3차원 깊이 지각 과정이 정보가 입력되는 시각 경로가 동측인지 대측인지에 따라 차이날 수 있으며, 자극에 대한 행동 반응의 적절성은 깊이 변화 방향과 밀접한 관련이 있을 가능성을 논의하였다.

keywords
3차원 깊이 지각, 좌우 시야 비대칭성, 시각 경로, 자극-반응 호환성, Depth Perception, Asymmetry between visual fields, Visual Pathway, Stimulus-Response Compatibility

Abstract

It is investigated whether the visual pathway starting from retina could be separated and measured behaviorally. It could be possible to separate visual pathways with four combinations of left/right visual fields and viewing eyes. 12 spheral stimuli along two imagery concentric circles were presented against dark background, and then one of stimulus was shifted rightward or leftward. Since a stimulus shift occurred on one of two visual displays viewed exclusively by one of two eyes, an observer perceived it as shifted its depth position closer or further away. We manipulated the stimulus shifting conditions, consisting of viewing eyes, visual fields, stimulus shifting directions, and measured observers’ reaction time performance as promptness to its change. Several interaction effects among visual fields, viewing eyes, and shift directions were obtained to show that there could be a performance difference between contralateral and ipsilateral visual pathway of the 3-D related information processing. In addition, the interaction effect with response assignment might be caused by the natural human response tendency to the 3-D motion direction.

keywords
3차원 깊이 지각, 좌우 시야 비대칭성, 시각 경로, 자극-반응 호환성, Depth Perception, Asymmetry between visual fields, Visual Pathway, Stimulus-Response Compatibility

참고문헌

1.

임재아, 남종호 (2014). 3-D 영상 제작 시 고려돼야 할 좌우 눈의 비대칭적인 역할. 방송공학회지, 19, 478-490.

2.

Blake, R., & Sekular, R. (2006). Perception. New Yok: McGraw-Hill.

3.

Boulinguez, P., Ferrois, M., & Graumer, G. (2003). Hemispheric asymmetry for trajectory perception. Cognitive Brain Research, 16, 219- 225.

4.

Brackenridge, C. J. (1982). The contribution of genetic factors to ocular dominance. Behavioral Genetics, 12(3), 319-325.

5.

Carrasco, M., Talgar, C. P., & Cameron, E. L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task, and set size. Spatial Vision, 15, 61-75.

6.

Christman, S., Kitterle, F. L., & Hellige, J. (1991). Hemispheric asymmetry in the processing of absolute versus relative spatial frequency. Brain and Cognition, 16, 62-73.

7.

Christman, S. D., & Niebauer, C. L. (1997). The Relation Between Left-Right and Upper-Lower Visual Field Asymmetries (or: What goes up goes right, while what's left lays low). In S. D. Christman, (Ed.), Cerebral Asymmetries in Sensory and Perceptual Processing (pp.263-296), Amsterdam, The Netherlands: Elsevier Science.

8.

Corballis, P. M. (2003). Visuospatial processing and the right-hemisphere interpreter. Brain and Cognition, 53, 171-176.

9.

Corballis, P. M., Funnell, M. G., & Gazzaniga, M. S. (2002). Hemispheric asymmetries for simple visual judgments in the split brain. Neuropsychologia, 40, 401-410.

10.

Corbetta, M., Miezin, F. M., Shulman, G. L., & Peterson, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13, 1202-1226.

11.

Coren, S. (1999). Sensorimotor performance as a function of eye dominance and handedness. Perception and Motor Skills, 88, 424-426.

12.

Danckert, J., & Goodale, M. A. (2001). Superior performance for visually guided pointing in the lower visual field. Experimental Brain Research, 137, 303-308.

13.

Delis, D. C., Robertson, L. C., & Efron, R. (1986). Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia, 24, 205-214.

14.

Durand, A. C., & Gould, G. M. (1910). A method of determining ocular dominance. Journal of the American Medical Association, 55, 369-370.

15.

Edwards, M., & Badcock, D. R. (1993). Asymmetries in the sensitivity to motion in depth: A centripetal bias. Perception, 22, 1013-1023.

16.

Freeman, G. L., & Chapman, J. S. (1935). Minor studies from the psychological laboratory of Northwestern University. American Journal of Psychology, 47, 146-151.

17.

Grabowska, A., & Nowicka, A. (1996). Visual-spatial-frequency model of cerebral asymmetry: A critical survey of behavioral and electrophysiological studies. Psychological Bulletin, 120, 434-449.

18.

Heilman, K. M., & Van Den Abell, T. (1979). Right hemisphere dominance for mediating cerebral activation. Neuropsychologia, 17, 315- 321.

19.

Hellige, J. B., & Michimata, C. (1989). Categorization versus distance: Hemispheric differences for processing spatial information. Memory and Cognition, 17, 770-776.

20.

Hickok, G., Kirk, K., & Bellugi, U. (1998). Hemispheric organization of local-and global-level visuospatial processes in deaf signers and its relation to sign language aphasia. Brain and Language, 65, 276-286.

21.

Itaya, S .K., & Van Hoesen, G. W. Retinal projections to the inferior and medial pulvinar nuclei in the Old-World monkey. Brain Research, 269 (1983) 223-230.

22.

Ivry, R. B., & Robertson, L. C. (1998). The two sides of perception. Cambridge, MA: MIT Press.

23.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. Siegelbaum, S. A. (2000). Principles of neural science(4th Ed.) (p.532). New Yok: McGraw- Hill.

24.

Kitterle, F. L., Hellige, J. B., & Christman, S. D. (1992). Visual hemispheric asymmetries depend on which spatial frequencies are task relevant. Brain and Cognition, 20, 308-314.

25.

Kitterle, F. L., & Selig, L. M. (1991). Visual field effects in the discrimination of sine-wave gratings. Perception and Psychophysics, 50, 15-18.

26.

Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach. Psychological Review, 94, 148-175.

27.

Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. (1989). Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations. Journal of Experimental Psychology: Human Perception and Performance, 15, 723-735.

28.

Lakha, L., & Humphreys, G. (2005). Lower visual field advantage for motion segmentation during high competition for selection. Spatial Vision, 18, 447-460.

29.

Lamb, M. R., Robertson, L. C., & Knight, R. T. (1989). Effects of right and left temporal parietal lesions on the processing of global and local patterns in a selective attention task. Neuropsychologia, 27, 471-483.

30.

Levine, M. W., & McAnany, J. J. (2005). The relative capabilities of the upper and lower visual hemifields. Vision Research, 45, 2820- 2830.

31.

Lund, F. H. (1932). The dependence of eye-hand coordinations upon eye-dominance. American Journal of Psychology, 44, 756-762.

32.

Manning, M. L., Finlay, D. C., Neil, R. A., & Frost, B. G. (1987). Detection threshold differences to crossed and uncrossed disparities. Vision Research, 27, 1683-1686.

33.

Mattingley, J. B., Bradshaw, J. L., Nettleton, N. C., & Bradshaw, J. A. (1994). Can task specific perceptual bias be distinguished from unilateral neglect? Neuropsychologia, 32, 805- 817.

34.

McAnany, J. J., & Levine, M. W. (2007). Magnocellular and parvocellular visual pathway contributions to visual field anisotropies. Vision Research, 47, 2327-2336.

35.

Merrell, D. J. (1957). Dominance of eye and hand. Human Biology, 29, 314-328.

36.

Okubo, M., & Nicholls, M. E. R. (2008). Hemispheric asymmetries for temporal information processing: transient detection versus sustained monitoring. Brain and Cognition, 66, 168-175.

37.

Peirce, J. W. (2007) PsychoPy-Psychophysics software in Python. Journal of Neuroscience Methods, 162, 8-13.

38.

Peyrin, C., Baciu, M., Segebarth, C., & Marendaz, C. (2004). Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study. NeuroImage, 23, 698-707.

39.

Porac, C., & Coren, S. (1976). The dominant eye. Psychological Bulletin, 83, 880-897.

40.

Porac, C., & Coren, S. (1982). The relationship between sighting dominance and the fading of a stabilized retinal image. Perception & Psychophysics, 32(6), 571-575.

41.

Porac, C., & Coren, S. (1984). Monocular asymmetries in vision: a phenomenal basis for eye signature. Canadian Journal of Psychology, 38, 610-624.

42.

Raymond, J. E. (1994). Directional anisotropy of motion sensitivity across the visual field. Vision Research, 34, 1029-1037.

43.

Rezec, A. A., & Dobkins, K. R. (2004). Attentional weighting: A possible account of visual field asymmetries in visual search? Spatial Vision, 17, 269-293.

44.

Schatz, J., & Erlandson, F. B. (2003). Level- repetition effects in hierarchical stimulus processing: timing and location of cortical activity. International Journal of Psychophysiology, 47, 255-269.

45.

Schoen, Z. J., & Scofield, C. F. (1935). A study of the relative neuromuscular efficiency of the dominant and non-dominant eye in binocular vision. Journal of General Psychology, 11, 156- 181.

46.

Sergent, J. (1982). The cerebral balance of power: Confrontation or cooperation? Journal of Experimental Psychology: Human, Perception and Performance, 8, 253-272.

47.

Shirai, N., & Yamaguchi. M. (2004). Asymmetry in the perception of motion-in-depth. Vision Research, 44, 1003-1011.

48.

Shneor, E., & Hochstein, S. (2006). Eye dominance effects in feature search. Vision Research, 46, 4258-4269.

49.

Shneor, E., & Hochstein, S. (2008). Eye dominance effects in conjunction search. Vision Research, 48, 1592-1602.

50.

Skrandies, W. (1987). The upper and lower visual field of man: electrophysiological and functional differences. In D. Ottoson (Ed.), Progress in sensory physiology (pp.1-93). Berlin: Springer.

51.

Sperry, R. W. (1968). Hemisphere deconnection and unity in conscious awareness. American Psychologists, Vol 23(10), 723-733.

52.

Stanojcic, N., Wilkins, M., Bunce, C., & Ionides, A. (2010). Visual fields in patients with multifocal intraocular lens implants and monovision: an exploratory study. Eye, 24, 1645-1651.

53.

Sturm, W., Reul, J., & Willmes, K. (1989). Is there a generalized right hemisphere dominance for mediating cerebral activation? Evidence from a choice reaction experiment with lateralized simple warning stimuli. Neuropsychologia, 27, 747-751.

54.

Wolfe, J. M., & O'Neill, P. (1998) Why are there Eccentricity Effects in Visual Search? Perception and Psychophysics, 60, 140-156

55.

Zoccolotti, P. (1978). Inheritance of ocular dominance. Behavior Genetics, 8, 377-379.

한국심리학회지: 인지 및 생물