바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Effects of optogenetic activation of dopamine neurons during discriminatory fear learning

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2016, v.28 no.1, pp.143-155
https://doi.org/10.22172/cogbio.2016.28.1.007


  • Downloaded
  • Viewed

Abstract

Midbrain dopamine neurons exhibit diverse responses to aversive stimuli, such as foot and tail shocks. Specifically one group of dopamine cells is phasically inhibited by the stimuli, whereas the other group is excited. A previous report indicated that mice whose dopamine neurons were genetically modified to disrupt the excited, but not inhibited, response to a shock exhibited generalized anxiety behavior after experiencing fearful events. Thus, it was hypothesized that an increase in dopaminergic excitation improved discriminatory fear learning. To test this idea, mice were trained in a discriminatory fear conditioning paradigm where one auditory conditioned stimulus (CS+) was paired with aversive footshock and the other tone (CS-) was not paired. Dopamine neurons in the ventral tegmental area were optogenetically stimulated during the presentation of one of the two CSs. The intensity of the footshock was strong enough for control mice to show generalized fear responses to both CSs. However, dopamine-stimulated mice was able to discriminate between two CSs, so that they freezed more time in response to CS+ than to CS-. These results suggest that dopamine neurons contribute to fear discrimination.

keywords
dopamine, fear conditioning, optogenetics, 도파민, 공포조건화, 광유전학

Reference

1.

Adamantidis, A. R., Tsai, H. C., Boutrel, B., Zhang, F., Stuber, G. D., Budygin, E. A., Tourino, C., Bonci, A., Deisseroth, K., de Lecea, L. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. Journal of neuroscience, 31(30), 10829-10835.

2.

Baldi, E., Lorenzini, C. A., & Bucherelli, C. (2004). Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiology of learning and memory, 81(3), 162-166.

3.

Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain research reviews, 28(3), 309-369.

4.

Brischoux, F., Chakraborty, S., Brierley, D. I., & Ungless, M. A. (2009). Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proceedings of the national academy of sciences, 106(12), 4894-4899.

5.

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68(5), 815-834.

6.

Choi, J. S., Cain, C. K., & LeDoux, J. E. (2010). The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learning & memory, 17(3), 139-147.

7.

Clark, J. J., Sandberg, S. G., Wanat, M. J., Gan, J. O., Horne, E. A., Hart, A. S., Akers C. A., Parker, J. G., Willuhn, I., Martinez, V., Evans, S. B., Stella, N., & Phillips, P. E. (2010). Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nature methods, 7(2), 126-129.

8.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482(7383), 85-88.

9.

Day, J. J., Roitman, M. F., Wightman, R. M., & Carelli, R. M. (2007). Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nature neuroscience, 10(8), 1020-1028.

10.

Fadok, J. P., Dickerson, T. M., & Palmiter, R. D. (2009). Dopamine is necessary for cue- dependent fear conditioning. Journal of neuroscience, 29(36), 11089-11097.

11.

Fields, H. L., Hjelmstad, G. O., Margolis, E. B., & Nicola, S. M. (2007). Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annual review of neuroscience, 30, 289-316.

12.

Han, J. H., Yiu, A. P., Cole, C. J., Hsiang, H. L., Neve, R. L., & Josselyn, S. A. (2008). Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learning & memory, 15(6), 443-453.

13.

Kheirbek, M. A., Klemenhagen, K. C., Sahay, A., & Hen, R. (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nature neuroscience, 15(12), 1613-1620.

14.

Laxmi, T. R., Stork, O., & Pape, H. C. (2003). Generalisation of conditioned fear and its behavioural expression in mice. Behavioural brain research, 145(1), 89-98.

15.

Lissek, S., Kaczkurkin, A. N., Rabin, S., Geraci, M., Pine, D. S., & Grillon, C. (2014). Generalized anxiety disorder is associated with overgeneralization of classically conditioned fear. Biological psychiatry, 75(11), 909-915.

16.

Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837-841.

17.

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of neuroscience, 16(5), 1936- 1947.

18.

Pfeifer, A., Brandon, E. P., Kootstra, N., Gage, F. H., & Verma, I. M. (2001). Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proceedings of the National Academy of Sciences, 98(20), 11450-11455.

19.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599.

20.

Sesack, S. R., & Grace, A. A. (2010). Cortico- Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology, 35(1), 27-47.

21.

Shaban, H., Humeau, Y., Herry, C., Cassasus, G., Shigemoto, R., Ciocchi, S., Barbieri, S., van der Putten, H., Kaupmann, K., Bettler, B., Luthi, A. (2006). Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nature neuroscience, 9(8), 1028-1035.

22.

Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: expectation and prediction. Psychological review, 88(2), 135-170.

23.

Tsai, H. C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., de Lecea, L., & Deisseroth, K. (2009). Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science, 324(5930), 1080-1084.

24.

Wise, R. A. (2004). Dopamine, learning and motivation. Nature reviews neuroscience, 5(6), 483-494.

25.

Zhuang, X., Masson, J., Gingrich, J. A., Rayport, S., & Hen, R. (2005). Targeted gene expression in dopamine and serotonin neurons of the mouse brain. Journal of neuroscience methods, 143(1), 27-32.

26.

Zweifel, L. S., Fadok, J. P., Argilli, E., Garelick, M. G., Jones, G. L., Dickerson, T. M., Allen, J. M., Mizumori, S. J., Bonci, A., Palmiter, R. D. (2011). Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nature neuroscience, 14(5), 620-626.

The Korean Journal of Cognitive and Biological Psychology