ISSN : 1226-9654
The aim of this research was to examine the intrinsic functional connectivity of the brain reward system in individuals at risk for Internet Gaming Disorder (IGD). Here we focus on the ventral striatum (VS) and ventromedial prefrontal cortex (vmPFC), the key brain regions for reward hedonic processing and evaluation, respectively. Resting state functional magnetic resonance imaging was acquired from 18 young male participants with Internet-game overuse (IO) and 20 comparable normal subjects (NCs) to compare the intrinsic connectivities of the VS and vmPFC as the two seed regions. The group comparison was made between the functional connectivity maps of these two groups, where resting-state functional connectivity was examined using correlation analysis on the signal fluctuations of each voxel and that of a seed region. The results indicate that the vmPFC functional connectivity of the IO group was reduced relative to the NC group in the inferior parietal region, which is known for attention control and social evaluation. In addition, the IO groups exhibited increased negative functional connectivity between the VS and the ventrolateral prefrontal cortex, suggesting a compensatory mechanism via an inhibitory influence of cognitive executive function on the reward system. These observations suggest that impaired functional connectivity between reward processing regions and cognitive control regions in the frontal and parietal areas is a neurological risk factor for IGD.
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170-177.
Baler, R. D., & Volkow, N. D. (2006). Drug addiction: the neurobiology of disrupted self-control. Trends in Molecular Medicine, 12, 559-566.
Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinatebased meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412-427.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37, 90-101.
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo‐planar mri. Magnetic Resonance in Medicine, 34, 537-541.
Block, J. J. (2008). Issues for DSM-V: Internet Addiction. The American Journal of Psychiatry, 165, 306-307.
Brett, M., Anton, J. -L., Valabregue, R., & Poline, J. -B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. Neuroimage, 16, S497.
Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860-1862.
Cai, C., Yuan, K., Yin, J., Feng, D., Bi, Y., Li, Y., Yu, D., Jin, C., Qin, W., & Tian, J. (2015). Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging and Behavior, 10, 12-20.
Carmona, S., Vilarroya, O., Bielsa, A., Tremols, V., Soliva, J., Rovira, M., Tomas, J., Raheb, C., Gispert, J., & Batlle, S. (2005). Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neuroscience Letters, 389, 88-93.
Chai, X. J., Castañón, A. N., Öngür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. Neuroimage, 59, 1420-1428.
Clithero, J. A., & Rangel, A. (2014). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience, 9, 1289-1302.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201-215.
Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with Attention Deficit Hyperactivity Disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 48, 194-215.
Ding, W. N., Sun, J. H., Sun, Y. W., Zhou, Y., Li, L., Xu, J. R., & Du, Y. S. (2013). Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PloS One, 8(3), e59902.
Dong, G., DeVito, E. E., Du, X., & Cui, Z. (2012). Impaired inhibitory control in ‘internet addiction disorder’: A functional magnetic resonance imaging study. Psychiatry Research:Neuroimaging, 203, 153-158.
Dong, G., Hu, Y., & Lin, X. (2013). Reward/punishment sensitivities among internet addicts: Implications for their addictive behaviors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 46, 139-145.
Dong, G., Hu, Y., Lin, X., & Lu, Q. (2013). What makes Internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biological Psychology, 94, 282-289.
Dong, G., Huang, J., & Du, X. (2011). Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. Journal of Psychiatric Research, 45, 1525-1529.
Dong, G., Lin, X., & Potenza, M. N. (2015). Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57, 76-85.
Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., Barch, D. M., Raichle, M. E., Petersen, S. E., & Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104, 13507-13512.
Feltenstein, M., & See, R. (2008). The neurocircuitry of addiction: an overview. British Journal of Pharmacology, 154, 261- 274.
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700-711.
Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15, 56-67.
Grant, J. E., Potenza, M. N., Weinstein, A., & Gorelick, D. A. (2010). Introduction to behavioral addictions. The American Journal of Drug and Alcohol Abuse, 36, 233-241.
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100, 253-258.
Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity:relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 4259-4264.
Hahn, T., Notebaert, K. H., Dresler, T., Kowarsch, L., Reif, A., & Fallgatter, A. J. (2014). Linking online gaming and addictive behavior: converging evidence for a general reward deficiency in frequent online gamers. Frontiers in Behavioral Neuroscience, 8, 385.
Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010). Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging, 28, 1051-1057.
Hong, S. -B., Kim, J. -W., Choi, E. -J., Kim, H. -H., Suh, J. -E., Kim, C. -D., Klauser, P., Whittle, S., Yucel, M., & Pantelis, C. (2013). Reduced orbitofrontal cortical thickness in male adolescents with internet addiction. Behavioral and Brain Functuctions, 9, 9081-9089.
Hong, S. -B., Zalesky, A., Cocchi, L., Fornito, A., Choi, E. -J., Kim, H. -H., Suh, J. -E., Kim, C. -D., Kim, J. -W., & Yi, S. -H. (2013). Decreased functional brain connectivity in adolescents with internet addiction. PloS One, 8(2), e57831.
Hur, M. H. (2006). Demographic, habitual, and socioeconomic determinants of Internet addiction disorder: an empirical study of Korean teenagers. CyberPsychology & Behavior, 9(5), 514-525.
Janowski, V., Camerer, C., & Rangel, A. (2013). Empathic choice involves vmPFC value signals that are modulated by social processing implemented in IPL. Social Cognitive and Affective Neuroscience, 8(2), 201-208.
Jin, C., Zhang, T., Cai, C., Bi, Y., Li, Y., Yu, D., Zhang, M., & Yuan, K. (2016). Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder. Brain Imaging and Behavior, 10, 719-729.
Kühn, S., & Gallinat, J. (2015). Brains online:structural and functional correlates of habitual Internet use. Addiction Biology, 20(2), 415-422.
Kalivas, P. W., & Volkow, N. D. (2014). The neural basis of addiction: a pathology of motivation and choice. American Journal of Psychiatry, 162, 1403-1413.
Keller, J. B., Hedden, T., Thompson, T. W., Anteraper, S. A., Gabrieli, J. D. E., & Whitfield-Gabrieli, S. (2015). Resting-state anticorrelations between medial and lateral prefrontal cortex: association with rorking memory, aging, and individual differences. Cortex, 64, 271-280.
Kim, E. J., Lee, S. Y., & Oh, S. G. (2003). The validation of korean adolescent internet addiction scale(K-AIAS). [한국판 청소년 인터넷 중독 척도의 타당화]. Korean Journal of Clinical Psychology, 22(1), 125-139.
Kim, J. (2016). Neural substrates during Feedback based learning In internet gaming overusers. (Unpublished doctoral dissertation), Kangwon National University, Chuncheon, South Korea.
Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21, RC159.
Ko, C. -H., Yen, J. -Y., Yen, C. -F., Chen, C. -S., Weng, C. -C., & Chen, C. -C. (2008). The association between Internet addiction and problematic alcohol use in adolescents: the problem behavior model. CyberPsychology &Behavior, 11(5), 571-576.
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., Brooks, D. J., Bench, C., & Grasby, P. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266-268.
Koob, G. F., & Le Moal, M. (2008). Neurobiological mechanisms for opponent motivational processes in addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3113-3123.
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35, 217-238.
Lee, H. C., & Ahn, C. Y. (2002). Development of the internet game addiction diagnostic scale. [인터넷게임 중독의 진단척도 개발]. The Korean journal of health psychology, 7(2), 211-239.
Li, B., Friston, K. J., Liu, J., Liu, Y., Zhang, G., Cao, F., Su, L., Yao, S., Lu, H., & Hu, D. (2014). Impaired frontal-basal ganglia connectivity in adolescents with internet addiction. Scientific Reports, 4, 5027.
Lin, F., Zhou, Y., Du, Y., Qin, L., Zhao, Z., Xu, J., & Lei, H. (2012). Abnormal white matter integrity in adolescents with internet addiction disorder: a tract-based spatial statistics study. PloS One, 7(1), e30253.
Lorenz, R. C., Krüger, J. K., Neumann, B., Schott, B. H., Kaufmann, C., Heinz, A., & Wüstenberg, T. (2013). Cue reactivity and its inhibition in pathological computer game players. Addiction Biology, 18, 134-146.
Ma, N., Liu, Y., Li, N., Wang, C. -X., Zhang, H., Jiang, X. -F., Xu, H. -S., Fu, X. -M., Hu, X., & Zhang, D. -R. (2010). Addiction related alteration in resting-state brain connectivity. Neuroimage, 49, 738-744.
Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., Sabuncu, M. R., Shafee, R., Lu, J., & Liu, H. (2013). Individual variability in functional connectivity architecture of the human brain. Neuron, 586-595.
Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage, 44, 893-905.
Murphy, K., & Fox, M. D. (2016). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage.
Schultz, W. (1997). Dopamine neurons and their role in reward mechanisms. Current Opinion in Neurobiology, 7, 191-197.
Smith, D. V., Clithero, J. A., Boltuck, S. E., & Huettel, S. A. (2014). Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards. Social Cognitive and Affective Neuroscience, 9, 2017-2025.
Sutherland, M. T., McHugh, M., Pariyadath, V., & Stein, E. A. (2012). Resting state functional connectivity in addiction: lessons learned and a road ahead. Neuroimage, 62, 2281-2295.
Swick, D., Ashley, V., & Turken, U. (2008). Left inferior frontal gyrus is critical for response inhibition. BioMed Central Neuroscience, 9(1), 1.
Tsukamoto, T., Kotani, Y., Ohgami, Y., Omura, K., Inoue, Y., & Aihara, Y. (2006). Activation of insular cortex and subcortical regions related to feedback stimuli in a time estimation task: an fMRI study. Neuroscience Letters, 399, 39-44.
Van Den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20, 519- 534.
Wang, H., Jin, C., Yuan, K., Shakir, T. M., Mao, C., Niu, X., Niu, C., Guo, L., & Zhang, M. (2015). The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder. Frontiers in Behavioral Neuroscience, 9.
Wang, L., Wu, L., Lin, X., Zhang, Y., Zhou, H., Du, X., & Dong, G. (2016). Dysfunctional default mode network and executive control network in people with Internet gaming disorder: Independent component analysis under a probability discounting task. European Psychiatry, 34, 36-42.
Wang, Y., Yin, Y., Sun, Y. -W., Zhou, Y., Chen, X., Ding, W. -N., Wang, W., Li, W., Xu, J. -R., & Du, Y. -S. (2015). Decreased prefrontal lobe interhemispheric functional connectivity in adolescents with internet gaming disorder: a primary study using resting-state fMRI. PloS One, 10(3), e0118733.
Wen, T., & Hsieh, S. (2016). Network-based analysis reveals functional connectivity related to internet addiction tendency. Frontiers in Human Neuroscience, 10, 6.
Weng, C. -B., Qian, R. -B., Fu, X. -M., Lin, B., Han, X. -P., Niu, C. -S., & Wang, Y. -H. (2013). Gray matter and white matter abnormalities in online game addiction. European Journal of Radiology, 82, 1308- 1312.
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity, 2(3), 125-141.
Wise, R. A. (1988). The neurobiology of craving:implications for the understanding and treatment of addiction. Journal of Abnormal Psychology, 97(2), 118.
Yen, J. Y., Ko, C. H., Yen, C. F., Chen, C. S., & Chen, C. C. (2009). The association between harmful alcohol use and Internet addiction among college students: comparison of personality. Psychiatry and Clinical Neurosciences, 63, 218-224.
Yoo, H. J., Cho, S. C., Ha, J., Yune, S. K., Kim, S. J., Hwang, J., Chung, A., Sung, Y. H., & Lyoo, I. K. (2004). Attention deficit hyperactivity symptoms and internet addiction. Psychiatry and Clinical Neurosciences, 58, 487-494.
Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior, 1, 237-244.
Yuan, K., Qin, W., Wang, G., Zeng, F., Zhao, L., Yang, X., Liu, P., Liu, J., Sun, J., & von Deneen, K. M. (2011). Microstructure abnormalities in adolescents with internet addiction disorder. PloS One, 6(6), e20708.
Yuan, K., Yu, D., Cai, C., Feng, D., Li, Y., Bi, Y., Liu, J., Zhang, Y., Jin, C., Li. L., Qin, W., & Tian, J. (2016). Frontostriatal circuits, resting state functional connectivity and cognitive control in internet gaming disorder. Addiction Biology.
Zhang, J. T., Ma, S. S., Yip, S. W., Wang, L. J., Chen, C., Yan, C. G., Liu, L., Liu, B., Deng, L. Y., Liu, Q. X., & Fang, X. Y. (2015). Decreased functional connectivity between ventral tegmental area and nucleus accumbens in Internet gaming disorder: evidence from resting state functional magnetic resonance imaging. Behaviral and Brain Functions, 11(1), 37.
Zhang, J. T., Yao, Y. W., Li, C. S., Zang, Y. F., Shen, Z. J., Liu, L., Wang, L. J., Liu, B., & Fang, X. Y. (2016). Altered resting-state functional connectivity of the insula in young adults with Internet gaming disorder. Addiction Biology, 21, 743-751.