바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

과제와 환경의 제약이 다트 던지는 동작에 미치는 영향

Effects of task and environmental constraints on postural control in dart throwing

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2018, v.30 no.2, pp.69-95
https://doi.org/10.22172/cogbio.2018.30.2.001
임용현 (경북대학교)
김남균 (계명대학교)
  • 다운로드 수
  • 조회수

초록

본 연구에서는 다트 던지는 동작이 자세유지 체계와 어떻게 협응을 이루는지 두 개의 실험을 실시하여 검증하였다. 실험 1에서는 Fitts 법칙에 따라 표적과의 거리를 이용하여 과제 난이도를 변화시켰으며, 실험 2에서는 지지면의 재질과 크기(나무 바닥, 고무판, 좁은 목재보)를 변화시켜 자세 유지를 교란하여 다트 던지는 동작과의 상호작용을 유도하였다. 실험의 조작이 다트 던지는 동작과 자세유지에 미치는 영향을 수행 결과, 운동 패턴 및 흔들림 정도로 나누어 분석하였다. 수행 결과는 반경오차, 가변오차 및 수행점수로 분석하였으며, 운동 패턴은 운동추적기의 센서로 수집한 시계열 자료로부터 추출한 관절(손목, 팔꿈치, 어깨, 엉덩이, 무릎, 발목)의 각도 변화 값들을 상호 비교한 교차상관 분석값들을 사용하여 분석하였다. 마지막으로 신체의 흔들림 정도는 머리의 앞뒤 및 좌우 흔들림, 어깨의 앞뒤 및 좌우 흔들림 정도를 운동시간 동안 센서의 움직인 거리를 표준편차로 변환한 값을 사용하여 분석하였다. 실험 결과 운동통제 체계가 과제의 변화로 주어진 제약(더 빠른 가속력)이나 환경의 변화로 주어진 제약(자세유지의 어려움)에 대처하여 다분절 운동 사슬을 기능적으로 재구성하여 역동적으로 대처한다고 결론 내렸다.

keywords
다트 던지기, 다분절 운동 사슬, 협응, 교차상관분석, 자세유지, Dart throwing, Mulitijoint kinematic chain, Coordination, Cross-correlation, Postural control

Abstract

Two experiments were directed at postural coordination in dart throwing. Darts can be thrown using only the elbow and wrist while keeping the rest of the body stationary. In order to introduce variability in the coordination pattern, distances to the target (Experiment 1), and the characteristics of support surface (Experiment 2) were varied. Dart throwing data were obtained using a wireless motion tracking system via sensors attached to the index finger, wrist, elbow, shoulder, hip, knee, and ankle of the right side (the throwing hand) with additional sensors attached to the head and the left shoulder, for a total of 9 sensors. Cross-correlations between joints (wrist-elbow, wrist-shoulder, wrist-hip, wrist-knee, wrist-ankle, elbow-shoulder, elbow-hip, elbow-knee, elbow-ankle, shoulder-hip, shoulder-knee, shoulder-ankle, hip-knee, hip-ankle, and knee-ankle) were used to construct coordination patterns. The standard deviations of the head and the right shoulder motion were used to assess body sway. In each condition of target distance (Experiment 1) and support surface (Experiment 2), participants threw darts 20 times, preceded by 20 practice throws. Different patterns of coordination arose as a function of target distance and support surface. Coupling strengths between joints were rearranged to cope with different demands imposed by different task constraints. Of particular interest was the finding that body sway was minimal in the narrow beam condition, less than in the wide plank or yoga mattress condition. Results suggest that the motor control system accomplishes a goal-directed movement by reassembling the multijoint kinematic chain dynamically under different task constraints.

keywords
다트 던지기, 다분절 운동 사슬, 협응, 교차상관분석, 자세유지, Dart throwing, Mulitijoint kinematic chain, Coordination, Cross-correlation, Postural control

참고문헌

1.

Anderson, M., & Pitcairn, T. (1986). Motor control in dart throwing. Human Movement Science, 5, 1-18.

2.

Bernstein, N. A. (1967). The coordination and regulation of movements. Oxford: Pergamon Press.

3.

Berrigan, F., Simoneau, M., Martin, O., & Teasdale, N. (2006). Coordination between posture and movement: interaction between postural and accuracy constraints. Experimental Brain Research, 170, 255-264.

4.

Blackburn, J. T., Riemann, B. L., Myers, J. B., & Lephart, S. M. (2003). Kinematic analysis of the hip and trunk during bilateral stance on firm, foam, and multiaxial support surfaces. Clinical Biomechanics, 18, 655-661.

5.

Dijkstra, T. M. H., Schöner, G., & Gielen, C. C. A. M. (1994). Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research, 97, 477-486.

6.

Eng, J. J., Winter, D. A., MacKinnon, C. D., Patla, A. E. (1992) Interaction of reaction moments and center of mass displacement for postural control during voluntary arm movements. Neuroscience Research Communication, 11, 73-80.

7.

Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381-391.

8.

Gibson, J. J. (1974). Notes on action. In E. Reed & R. Jones (Eds.), Reasons for realism: Selected essays of James J. Gibson (pp. 385-.392). Hillsdale, NJ: Lawrence Erlbaum Associates.

9.

Horak, F. B. (1987). Clinical measurement of postural control in adults. Physical Therapy, 67, 1881-1885.

10.

Horak, F. B., & Nashner, L. M. (1986). Central programming of postural movements: adaptation to altered support-surface configurations. Journal of Neurophysiology, 55, 1369-1381.

11.

Juras, G., & Słomka, K. (2013). Anticipatory postural adjustments in dart throwing. Journal of Human Kinetics, 37, 39-45.

12.

Kaminski, T. R. (2007). The coupling between upper and lower extremity synergies during whole body reaching. Gait & Posture, 26, 256-262.

13.

Kaminski, T. R., & Simpkins, S. (2001). The effects of stance configuration and target distance on reaching. Experimental Brain Research, 136, 439-446.

14.

Kaminski, T. R., Bock, C., & Gentile, A. M. (1995). The coordination between trunk and arm motion during pointing movements. Experimental Brain Research, 106, 457-466.

15.

Ko, Y. G., Challis, J. H., & Newell, K. M. (2003). Learning to coordinate redundant degrees of freedom in a dynamic balance task. Human Movement Science, 22, 47-66.

16.

Krishnamoorthy, V., Yang, J. F., & Scholz, J. P. (2005). Joint coordination during quiet stance: effects of vision. Experimental Brain Research, 164, 1-17.

17.

Latash, M. L. (2008). Synergy. New York: Oxford University Press.

18.

Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics, 15, 529-532.

19.

Lee, D. N., & Lishman, J. R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 87-95.

20.

Mah, C. D., Hulliger, M., Lee, R. G., & O'Callaghan, I. S. (1994). Quantitative analysis of human movement synergies: constructive pattern analysis for gait. Journal of Motor Behavior, 26, 83-102.

21.

Marchant, D. C., Clough, P. J., & Crawshaw, M. (2007). The effects of attentional focusing strategies on novice dart throwing performance and their task experiences. International Journal of Sport and Exercise Psychology, 5, 291-303.

22.

Martin, O., Teasdale, N., Simoneau, M., Corbeil, P., & Bourdin, C. (2000). Pointing to a target from an upright position in human: tuning of postural responses when there is target uncertainty. Neuroscience Letters, 281, 53-56.

23.

Massion, J. (1992). Movement, posture and equilibrium: interaction and coordination. Progress in Neurobiology, 38, 35-56.

24.

Massion, J., Alexandrov, A., & Frolov, A. (2004) Why and how are posture and movement coordinated? Progress in Brain Research, 143, 13-27.

25.

McDonald, P. V., Van Emmerik, R. E. A., & Newell, K. M. (1989). The effects of practice on limb kinematics in a throwing task. Journal of Motor Behavior, 21, 245-264.

26.

Nashner, L. M., & McCollum, G. (1985). The organization of human postural movements: a formal basis and experimental synthesis. Behavioral and Brain Sciences, 8, 135-150.

27.

Nasu, D., Matsuo, T., & Kadota, K. (2014). Two types of motor strategy for accurate dart throwing. PloS ONE, 9, e88536. doi: 10.1371/journal.pone.0088536

28.

Newell, K. M., & Van Emmerik, R. E. A. (1989). The acquisition of coordination: preliminary analysis of learning to write. Human Movement Science, 8, 17-32.

29.

Plamondon, R., & Alimi, A. M. (1997). Spped/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences, 20, 279-349.

30.

Pozzo, T., Stapley, P. J., & Papaxanthis, C. (2002). Coordination between equilibrium and hand trajectories during whole body pointing movements. Experimental Brain Research, 144, 343-350.

31.

Riemann, B. L., Myers, J. B., & Lephart, S. M. (2003). Comparison of the ankle, knee, hip, and trunk corrective action shown during single-leg stance on firm, foam, and multiaxial surfaces. Archives of Physical Medicine and Rehabilitation, 84, 90-95.

32.

Rienhoff, R., Baker, J., Fischer, L., Strauss, B., & Schorer, J. (2012). Field of vision influences sensory-motor control of skilled and less-skilled dart players. Journal of Sports Science & Medicine, 11, 542-550.

33.

Rosenbaum, D. A., Meulenbroek, R. G., & Vaughan, J. (2001). Planning reaching and grasping movements: theoretical premises and practical implications. Motor Control, 5, 99-115.

34.

Schatz, B. (2011). Hitting the bull part II: The game of darts—Technique. Retrieved from http://www.artofmanliness.com/2011/01/07/the-game-of-darts-part-ii-technique/

35.

Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research, 126, 289-306.

36.

Sherwood, D. E., Lohse, K. R., & Healy, A. F. (2014). Judging joint angles and movement outcome: Shifting the focus of attention in dart-throwing. Journal of Experimental Psychology: Human Perception and Performance, 40, 1903-1914.

37.

Smart, L. J., Mobley, B. S., Otten, E. W., Smith, D. L., & Amin, M. R. (2004). Not just standing there: The use of postural coordination to aid visual tasks. Human Movement Science, 22, 769-780.

38.

Smeets, J. B., Frens, M. A., & Brenner, E. (2002). Throwing darts: timing is not the limiting factor. Experimental Brain Research, 144, 268-274.

39.

Stoffregen, T. A., Smart, L. J., Bardy, B. G., & Pagulayan, R. J. (1999). Postural stabilization of looking. Journal of Experimental Psychology: Human Perception and Performance, 25, 1641- 1658.

40.

Tricon, V., LePellec-Muller, A., Martin, N., Mesure, S., Azulay, J.-P., Vernazza-Martin, S., (2007). Balance control and adaptation of kinematic synergy in aging adults during forward trunk bending. Neuroscience Letters, 415, 81-86.

41.

Tseng, Y. W., Scholz, J. P., Schöner, G., & Hotchkiss, L. (2003). Effect of accuracy constraint on joint coordination during pointing movements. Experimental Brain Research, 149, 276-288.

42.

Tuller, B., Turvey, M. T., & Fitch, H. L. (1982). The Bernstein perspective: II. The concept of muscle linkage or coordinative structure. In J. A. S. Kelso(Ed.), Human Motor Behavior: An introduction, 253-270.

43.

Turvey, M. T. (1990). Coordination. The American Psychologist, 45, 938-953.

44.

Turvey, M. T., Fitch, H. L., & Tuller, B. (1982). The Bernstein perspective: I. The problems of degrees of freedom and context-conditioned variability. In J. A. S. Kelso (Ed.), Human motor behavior: An introduction (pp. 239-252). Hillsdale, NJ: Lawrence Erlbaum Associates.

45.

Van Emmerik, R. E., & Newell, K. M. (1990). The influence of task and organismic constraints on intralimb and pen-point kinematics in a drawing task. Acta Psychologica, 73, 171-190.

46.

Vernazza-Martin, S., Martin, N., Le Pellec-Muller, A., Tricon, V., & Massion, J. (2006). Kinematic synergy adaptation to an unstable support surface and equilibrium maintenance during forward trunk movement. Experimental Brain Research, 173, 62-78.

47.

Wing, A. M., Flanagan, J. R., & Richardson, J. (1997). Anticipatory postural adjustments in stance and grip. Experimental Brain Research, 116, 122-130.

48.

Wing, A. M., & Kristofferson, A. B. (1973). The timing of interresponse intervals. Perception & Psychophysics, 13, 455-460.

49.

Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3, 193-214.

한국심리학회지: 인지 및 생물