바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

아동기 대략적 수 민감도가 비-상징적 곱셈 추론에 미치는 영향

Effects of approximate number sense on child's ability to solve non-symbolic multiplication problem

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2018, v.30 no.3, pp.285-291
https://doi.org/10.22172/cogbio.2018.30.3.007
권나연 (덕성여자대학교)
김제중 (덕성여자대학교)
김소연 (덕성여자대학교)
  • 다운로드 수
  • 조회수

초록

대략적 수 민감도(Approximate Number Sense; ANS)는 대략적으로 수량이 많은 지, 적은 지를 파악하는 능력이다. 본 연구에서는 21명의 만 4-6세 아동을 대상으로 비-상징적 곱셈 추론 문제를 해결하는 능력을 검증하고, 아동의 ANS와 지능, 그리고 비-상징적 곱셈 추론 능력 간의 관계를 살펴보았다. 이를 통해 1) 만 4-6세 아동들이 비-상징적으로 제시되는 곱셈 문제를 해결 할 수 있는 지를 알아보고자 하였으며, 2) 아동의 지능을 통제하고도 ANS가 초기 산술 능력을 유의미하게 설명할 수 있는지를 검증해보고자 하였다. 그 결과 만 4-6세 아동들은 비-상징적으로 제시되는 곱하기 2 조건과 곱하기 4 조건 모두에서 우연 수준보다 유의미하게 높은 수행률을 보였으며, 이는 곱셈에 대한 정규 교육을 받지 않은 어린 아동의 경우에도 비-상징적인 곱셈의 추론이 가능함을 시사한다. 또한, 비-상징적 곱셈 추론 정확도, 대략적 수 민감도의 정확도와 반응시간, 그리고 전체지능(FSIQ) 간의 관계를 살펴본 결과, 곱하기 2 추론 정확도는 ANS 과제에서의 반응시간과 유의미한 부적상관을 보였으며 이러한 결과는 아동의 지능을 통제하였을 때에도 유의하였다. 즉, 곱하기 2 추론의 경우, 만 4-6세 아동이 ANS 과제에서 더 빠르게 반응할수록 비-상징적 곱셈 추론의 정확도가 높았으며, 이러한 관계는 아동의 지능과 관계없이 나타났다. 그러나 곱하기 4 추론 정확도와 ANS, 그리고 지능 간의 관계는 유의미하지 않았다. 본 연구의 결과는 비-상징적 곱셈 추론 능력이 최소 만 4세 연령에서도 가능함을 시사하며, 아동의 ANS가 비-상징적 곱셈 추론 능력을 설명할 수 있음을 시사한다.

keywords
Child, Preschooler, Approximate Number Sense (ANS), Non-symbolic multiplication, IQ, 아동, 학령전기, 대략적 수 민감도, 비-상징적 곱셈, 지능

Abstract

Approximate Number Sense (ANS) is an intrinsic intuition and innate cognitive function. It helps children to roughly determine if a quantity is larger or smaller than another. In the current study, we examined relative roles of ANS and intelligence on early arithmetic development in children aged 4-6. Our purpose was 1) to examine whether children aged 4-6 can solve non-symbolic multiplication problems and 2) to examine effects of ANS on early arithmetic development after controlling out effects of intellectual ability. Twenty one young children (4-6 years old) performed non-symbolic multiplication tasks (i..e, multiplication 2 and 4) and a ANS task. Results showed that children as young as 4 years old can solve both non-symbolic multiplication problems above chance level. Also, we found that the efficiency of ANS measured by ANS RTs played a critical role for non-symbolic multiplication 2 task performance even after controlling out effects of IQ. Overall, we conclude that preschoolers as young as 4 years old who don't have prior learning experience of multiplication problems can solve non-symbolic multiplication problems, which might be explained by children's ANS functions.

keywords
Child, Preschooler, Approximate Number Sense (ANS), Non-symbolic multiplication, IQ, 아동, 학령전기, 대략적 수 민감도, 비-상징적 곱셈, 지능

참고문헌

1.

Barth, H., Baron, A., Spelke, E., & Carey, S. (2009). Children’s multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 103, 441-454.

2.

De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48-55.

3.

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307-314.

4.

Gebuis, T., & Reynvoet, B. (2015). The Development of Numerical Abilities. The Oxford Handbook of Numerical Cognition, 331-333.

5.

Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25, 789-798.

6.

Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665-668.

7.

Kibbe, M. M., & Feigenson, L. (2015). Young children ‘solve for x’using the Approximate Number System. Developmental Science, 18, 38-49.

8.

Kim, S. Y., Hashimoto, R. I., Tassone, F., Simon, T. J., & Rivera, S. M. (2013). Altered neural activity of magnitude estimation processing in adults with the fragile X premutation. Journal of Psychiatric Research, 47, 1909-1916.

9.

Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability?. Learning and Individual Differences, 25, 126-133.

10.

Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27, 191-202.

11.

McCrink, K., & Spelke, E. S. (2010). Core multiplication in childhood. Cognition, 116, 204-216.

12.

McCrink, K., & Spelke, E. S. (2016). Non-symbolic division in childhood. Journal of Experimental Child Psychology, 142, 66-82.

13.

Park H. W., Lee K. O., & Ahn D H. (2016). K-WPPSI-IV Wechsler Preschool and Primary Scale of Intelligence. Seoul: Hakjisa

14.

Peters, E., & Bjalkebring, P. (2015). Multiple numeric competencies: When a number is not just a number. Journal of Personality and Social Psychology, 108, 802.

15.

Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 44, 162.

16.

Wechsler, D. (2012). Technical and interpretative manual: WPPSI-IV. NY: Pearson Inc.

17.

Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2016). The relation between ANS and symbolic arithmetic skills: The mediating role of number-numerosity mappings. Contemporary Educational Psychology, 46, 208-217.

한국심리학회지: 인지 및 생물