ISSN : 1226-9654
역 거리 효과란, 비교 과제에서 자극 간의 거리가 가까울수록 더 좋은 수행을 보이는 현상을 말한다. 본 연구에서는 숫자, 한글 자음/모음, 영어 알파벳을 사용한 순서 판단 시 역 거리 효과가 나타나는지를 확인하고, 각 과제의 수행과 수학, 국어, 영어 성취도 간의 관계를 분석하였다. 연구 결과, 모든 순서 판단 과제에서 역 거리 효과가 나타나 숫자와 글자의 순서 정보가 유사하게 처리됨을 확인하였다. 참가자들은 숫자 과제를 한글 과제보다, 한글 과제를 영어 과제보다 더 우수하게 수행하였다. 이는 숫자와 비교할 때 글자 순서 판단은 상대적으로 익숙하지 않은 과제이기 때문인 것으로 해석할 수 있다. 또한, 이 결과를 통해 외국어와 비교할 때 모국어 글자 판단이 더 수월하였음을 알 수 있다. 회귀분석 결과, 숫자, 한글, 알파벳 순서 판단 과제의 수행이 수학, 국어, 영어 성취도를 유의하게 예측하였다. 이러한 결과는 숫자와 글자 순서 판단 과제의 수행이 수학만이 아닌 언어 영역의 학업 성취도와도 밀접한 관계가 있음을 시사한다. 본 연구는 순서 판단 과제의 수행과 언어 영역 성취도 간의 관계를 살펴본 최초의 연구로서, 순서 판단 능력이 수학 및 수학 외 언어 영역의 성취와도 밀접한 관계가 있음을 시사한다.
The present study examined whether a reverse distance effect (RDE) is consistently observed for ordinality judgment using numbers, Korean letters and the alphabet. RDE refers to a phenomenon in which better performance is observed for judgment on stimuli that are closer to each other. We examined whether performance on these tasks are correlated with academic achievement in math, Korean and English domains. Indeed, RDEs were observed from all three tasks. This result reveals that the order of numbers and letters are similarly processed and is consistent with the results of previous studies reporting RDE. Performance was better for order judgment of numbers compared to Korean letters, and for Korean letters compared to the alphabet. This reveals that ordinality judgment of letters are less efficient compared to numbers and that ordinality judgment in the native language is more efficient compared to a foreign language. Linear regression analysis revealed that ordinality judgment performance using numbers and Korean letters significantly predicted math achievement. All three ordinality judgment performance predicted achievement in Korean and English domains. These results suggest that ordinality judgment of numbers and letters is related to achievement in not only math but also language. The present study is the first to examine the relationship between ordinality judgment performance and language achievement. We hereby propose that ordinal representations may be more domain-general than previously conceived, going beyond their presupposed numerical nature.
Arthur Jr, W., Tubre, T. C., Paul, D. S., & Sanchez-Ku, M. L. (1999). College-sample psychometric and normative data on a short form of the Raven Advanced Progressive Matrices Test. Journal of Psychoeducational Assessment, 17, 354- 361.
Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7, 145-147.
De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469-479.
Franklin, M. S., Jonides, J., & Smith, E. E. (2009). Processing of order information for numbers and months. Memory & Cognition, 37, 644-654.
Fulbright, R. K., Manson, S. C., Skudlarski, P., Lacadie, C. M., & Gore, J. C. (2003). Quantity determination and the distance effect with letters, numbers, and shapes: a functional MR imaging study of number processing. American Journal of Neuroradiology, 24, 193-200.
Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, B87-B95.
Goffin, C., & Ansari, D. (2016). Beyond magnitude: Judging ordinality of symbolic number is unrelated to magnitude comparison and independently relates to individual differences in arithmetic. Cognition, 150, 68-76.
Hamilton, J., & Sanford, A. (1978). The symbolic distance effect for alphabetic order judgements: A subjective report and reaction time analysis. The Quarterly Journal of Experimental Psychology, 30, 33-41.
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17-29.
Jacob, S. N., & Nieder, A. (2008). The ABC of cardinal and ordinal number representations. Trends in Cognitive Sciences, 12, 41-43.
Jou, J. (1997). Why is the alphabetically middle letter in a multiletter array so hard to determine? Memory processes in linear-order information processing. Journal of Experimental Psychology: Human Perception and Performance, 23, 1743.
Knops, A., & Willmes, K. (2014). Numerical ordering and symbolic arithmetic share frontal and parietal circuits in the right hemisphere. Neuroimage, 84, 786-795.
Lyons, I., Vogel, S., & Ansari, D. (2016). On the ordinality of numbers: a review of neural and behavioral studies. Progress in Brain Research, 227, 187-221.
Lyons, I. M., & Ansari, D. (2015). Numerical Order Processing in Children: From Reversing the Distance‐Effect to Predicting Arithmetic. Mind, Brain, and Education, 9, 207-221.
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121, 256-261.
Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17, 714-726.
Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., . . . Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana Survey. Developmental Psychology, 48, 123.
Reynvoet, B., & Sasanguie, D. (2016). The Symbol Grounding Problem Revisited: A Thorough Evaluation of the ANS Mapping Account and the Proposal of an Alternative Account Based on Symbol - Symbol Associations. Frontiers in Psychology, 7, 1581.
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347, 534-536.
Turconi, E., Campbell, J. I., & Seron, X. (2006). Numerical order and quantity processing in number comparison. Cognition, 98, 273-285.
Turconi, E., Jemel, B., Rossion, B., & Seron, X. (2004). Electrophysiological evidence for differential processing of numerical quantity and order in humans. Cognitive Brain Research, 21, 22-38.
Vogel, S. E., Haigh, T., Sommerauer, G., Spindler, M., Brunner, C., Lyons, I. M., & Grabner, R. H. (2017). Processing the order of symbolic numbers: A reliable and unique predictor of arithmetic fluency. Journal of Numerical Cognition, 3, 288-308.
Vogel, S. E., Remark, A., & Ansari, D. (2015). Differential processing of symbolic numerical magnitude and order in first-grade children. Journal of Experimental Child Psychology, 129, 26-39.
Vos, H., Sasanguie, D., Gevers, W., & Reynvoet, B. (2017). The role of general and number-specific order processing in adults’ arithmetic performance. Journal of Cognitive Psychology, 29, 469-482.