바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Neural Correlates of Object and Verbal Cognitive Style during Task Switching

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2019, v.31 no.3, pp.199-209
https://doi.org/10.22172/cogbio.2019.31.3.001


Abstract

The current study explored neural correlates of the relationship between cognitive style and task switching processes. A task switching paradigm including object and verbal tasks was employed and neural responses were collected using fMRI. Behavioral and neural switch costs were correlated with individuals’ cognitive style preference scores. A total of thirty-five young adults participated in this study. Behavioral results showed that verbal preference scores were positively correlated with the switch cost in the object task. Neural responses in the object task showed a positive relationship between object style preference and the neural switch cost in the posterior cingulate cortex/precuneus and left intraparietal sulcus. In addition, an interaction between the object and verbal preferences was found in the angular gyrus during the object task. These results show how the individual differences in cognitive style preference during task switching could be linked to individual variations in neural responses. These findings suggest that cognitive style preference may be related to cognitive control through attentional resource allocation, and selection, and the processing of target- and distractor-relevant information during task switching.

keywords
task switching, fMRI, cognitive style, switch cost, 과제전환, 기능적 자기공명영상, 인지양식, 전환비용

Reference

1.

Aggarwal, I., & Woolley, A. W. (2013). Do you see what I see? The effect of members’ cognitive styles on team processes and errors in task execution. Organizational Behavior and Human Decision Processes, 122(1), 92-99.

2.

Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527-536.

3.

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.

4.

Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object spatial imagery: a new self report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239-263.

5.

Blazhenkova, O., & Kozhevnikov, M. (2009). The new object spatial verbal cognitive style model: Theory and measurement. Applied Cognitive Psychology, 23(5), 638-663.

6.

Brass, M., & von Cramon, D. Y. (2002). The role of the frontal cortex in task preparation. Cerebral Cortex, 12(9), 908-914.

7.

Brass, M., & von Cramon, D. Y. (2004). Selection for cognitive control: a functional magnetic resonance imaging study on the selection of task-relevant information. Journal of Neuroscience, 24(40), 8847-8852.

8.

Buzzell, G. A., Roberts, D. M., Baldwin, C. L., & McDonald, C. G. (2013). An electrophysiological correlate of conflict processing in an auditory spatial Stroop task: The effect of individual differences in navigational style. International Journal of Psychophysiology, 90(2), 265-271.

9.

Cao, F., Peng, D., Liu, L., Jin, Z., Fan, N., Deng, Y., & Booth, J. R. (2009). Developmental differences of neurocognitive networks for phonological and semantic processing in Chinese word reading. Human Brain Mapping, 30(3), 797-809.

10.

Corradi-Dell’Acqua, C., Fink, G. R., & Weidner, R. (2015). Selecting category specific visual information: Top-down and bottom-up control of object based attention. Consciousness and Cognition, 35, 330-341.

11.

Cui, X., Jeter, C. B., Yang, D., Montague, P. R., & Eagleman, D. M. (2007). Vividness of mental imagery: individual variability can be measured objectively. Vision Research, 47(4), 474-478.

12.

Fodor, J. A. (1983). The modularity of mind. MIT press.

13.

Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage, 42(3), 1178-1184.

14.

Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cognitive Brain Research, 20(2), 226-241.

15.

Hilbert, S., Bühner, M., Sarubin, N., Koschutnig, K., Weiss, E., Papousek, I., Reishofer, G., Magg, M., & Fink, A. (2015). The influence of cognitive styles and strategies in the digit span backwards task: Effects on performance and neuronal activity. Personality and Individual Differences, 87, 242-247.

16.

Kim, C., Johnson, N. F., & Gold, B. T. (2014). Conflict adaptation in prefrontal cortex: now you see it, now you don't. Cortex, 50, 76-85.

17.

Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24(3), 749-759.

18.

Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology: toward an integrated framework of cognitive style. Psychological Bulletin, 133(3), 464.

19.

Kozhevnikov, M., Blazhenkova, O., & Becker, M. (2010). Trade-off in object versus spatial visualization abilities:Restriction in the development of visual-processing resources. Psychonomic Bulletin & Review, 17(1), 29-35.

20.

Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002). Revising the visualizer-verbalizer dimension: Evidence for two types of visualizers. Cognition and Instruction, 20(1), 47-77.

21.

Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: A new characterization of visual cognitive style. Memory & Cognition, 33(4), 710-726.

22.

Kraemer, D. J., Hamilton, R. H., Messing, S. B., DeSantis, J. H., & Thompson-Schill, S. L. (2014). Cognitive style, cortical stimulation, and the conversion hypothesis. Frontiers in Human Neuroscience, 8, 15.

23.

Kraemer, D. J., Rosenberg, L. M., & Thompson-Schill, S. L. (2009). The neural correlates of visual and verbal cognitive styles. Journal of Neuroscience, 29(12), 3792-3798.

24.

Lipp, I., Benedek, M., Fink, A., Koschutnig, K., Reishofer, G., Bergner, S., . . . Neubauer, A. (2012). Investigating neural efficiency in the visuo-spatial domain: an FMRI study. PloS One, 7(12), e51316.

25.

Messick, S. (1976). Personality consistencies in cognition and creativity. In S. Messick, (Ed.), Individuality in Learning:Implications of cognitive style and creativity for human development. SF: Jossey-Bass.

26.

Motes, M. A., Malach, R., & Kozhevnikov, M. (2008). Object-processing neural efficiency differentiates object from spatial visualizers. Neuroreport, 19(17), 1727-1731.

27.

Occelli, V., Lin, J. B., Lacey, S., & Sathian, K. (2014). Loss of form vision impairs spatial imagery. Frontiers in Human Neuroscience, 8, 159.

28.

Oh, Y., & Kim, C. (2016). Individual differences in cognitive flexibility during task switching according to cognitive style. The Korean Journal of Cognitive and Biological Psychology, 28(2), 241-252.

29.

Perfetti, B., Moisello, C., Landsness, E. C., Kvint, S., Pruski, A., Onofrj, M., . . . Ghilardi, M. F. (2011). Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task. Journal of Neurophysiology, 105(1), 18-27.

30.

Pitta-Pantazi, D., Sophocleous, P., & Christou, C. (2013). Spatial visualizers, object visualizers and verbalizers: Their mathematical creative abilities. ZDM, 45(2), 199-213.

31.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682.

32.

Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9), 940-945.

33.

Seghier, M. L. (2013). The angular gyrus multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43-61.

34.

Shin, G., & Kim, C. (2013). Individual differences in performance on working memory tasks according to object, spatial, and verbal cognitive styles. The Korean Journal of Cognitive and Biological Psychology, 25, 539-653.

35.

Shin, G., & Kim, C. (2015). Neural correlates of cognitive style and flexible cognitive control. Neuroimage, 113, 78-85.

36.

Song, M., Liu, Y., Zhou, Y., Wang, K., Yu, C., & Jiang, T. (2009). Default network and intelligence difference. IEEE Transactions on Autonomous Mental Development, 1(2), 101-109.

37.

Stern, E. R., Wager, T. D., Egner, T., Hirsch, J., & Mangels, J. A. (2007). Preparatory neural activity predicts performance on a conflict task. Brain Research, 1176, 92-102.

38.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.

39.

Zarnhofer, S., Braunstein, V., Ebner, F., Koschutnig, K., Neuper, C., Ninaus, M., . . . Ischebeck, A. (2013). Individual differences in solving arithmetic word problems. Behavioral and Brain Functions, 9(1), 28.

40.

Zarnhofer, S., Braunstein, V., Ebner, F., Koschutnig, K., Neuper, C., Reishofer, G., & Ischebeck, A. (2012). The influence of verbalization on the pattern of cortical activation during mental arithmetic. Behavioral and Brain Functions, 8(1), 13.

The Korean Journal of Cognitive and Biological Psychology