바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

여성 얼굴의 매력 지각과 공간주파수: 고주파수 주도적 매력 지각

Spatial Frequency and Female Facial Attractiveness: Superiority of High-Frequency Information in Attractiveness Perception

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2019, v.31 no.3, pp.231-244
https://doi.org/10.22172/cogbio.2019.31.3.004
이수진 (한림대학교)
최훈 (한림대학교)
  • 다운로드 수
  • 조회수

초록

매력적인 얼굴은 우리의 주의를 끌고 사람들과 상호작용 하는 데 영향을 미치는 주요한 요인이다. 오래전부터 얼굴 매력에 영향을 미치는 다양한 시지각적인 요소들이 연구되어 왔는데, 그 중 한 가지가 공간주파수 정보이다. 얼굴 정보 처리과정에서 공간주파수 정보는 대역에 따라 독립적으로 처리되는데, 고주파수 정보는 국지적인 특성들을 포함하는 반면, 저주파수 정보는 전역적인 특성을 포함하고 있다. 따라서 기존 연구들은 매력도 지각에 영향을 미치는 공간 주파수 유형별 특성과 매력도 지각과의 관계를 확인하기 위해 공간주파수 유형 간의 상대적 영향력을 확인해왔다. 그러나 얼굴 매력과 공간주파수와의 관계에 대한 연구는 아직 부족하며, 명확히 밝혀진 바가 없다. 특히, 남성의 얼굴 매력도에는 고주파수 보다 저주파수 정보의 영향력이 상대적으로 강하다는 주장이 일관적으로 지지되고 있으나, 여성 얼굴에 대해서는 일관되지 않은 결과를 보였다. 이처럼 여성 얼굴에서 일관되지 않은 결과를 보고한 선행 연구들은 고주파수 정보의 효과를 성공적으로 분리시켜 확인하지 않았거나, 제시된 두 자극의 상대적 매력만을 평정하게 하는 등 방법적인 한계점이 존재했다. 따라서 본 연구의 목적은 여성 얼굴 매력 지각에서 공간주파수 유형의 상대적 영향력을 명확히 밝히는 데 있다. 실험에 사용할 자극을 선별하기 위해, 여성 얼굴 사진에 각각 고주파수, 저주파수 필터를 적용시킨 후, 변환한 각 사진에 대한 매력도 평가를 수행하였다. 매력도 평점에 따라 저주파수, 고주파수 정보에서 모두 높거나(미인 집단) 낮은 매력도를 보인 집단(일반 집단), 저주파에서만 높은 매력도를 보이거나(저주파수 미인집단), 고주파수에서만 높은 매력도를 보인 집단(고주파수 미인집단)에 해당하는 자극을 선정하였다. 실험 1에서는 하이브리드 이미지(저주파수와 고주파수 필터 사진을 겹쳐서 보여주는 것)를 사용하여, 한 인물의 저주파수, 고주파수 정보가 동시에 제시될 때의 매력도 평정을 하도록 하였다. 그 결과, 고주파수 미인 집단의 매력도가 저주파수 미인 집단보다 높았다(미인 집단>고주파수미인 집단>저주파수미인 집단>일반 집단). 실험 2에서는 각 자극의 실제사진에 대한 매력도 평가를 시행하였다. 실험 2의 결과는 실험 1의 결과와 일치하였다. 이러한 결과는 여성 얼굴 매력 지각에 저주파수 정보보다 고주파수 정보가 더 강한 영향력을 갖는다는 것을 의미한다.

keywords
공간주파수, 여성 얼굴 매력 지각, 하이브리드 이미지, spatial frequency, female facial attractiveness, hybrid image

Abstract

Attractive faces are important visual stimuli that capture people’s attention and influence how people interact with others. Many studies have explored the visual perceptual features that affect facial attractiveness, one of which is spatial frequency information. The face information is processed independently according to the spatial frequency band. The high frequency (HF) information includes the local characteristics of face such as eyes, nose, and mouth, while the low frequency (LF) information includes the global (or holistic) characteristics. Previous studies have explored the relationship between spatial frequencies and attractiveness by identifying specific spatial frequency bands that have a dominant influence on perceived attractiveness; however, the relationship is still unclear and has not been fully studied. Whereas most studies agree that LF plays the more important role in the perception of male facial attractiveness, there is still controversy over female facial attractiveness. This controversy may be due to limitations of previous studies' research methodologies, such as not isolating HF and taking indirect measures when assessing facial attractiveness. The purpose of the current study is to examine systematically which spatial frequency information plays the more key role in the perception of female facial attractiveness. In a preliminary experiment, participants were asked to rate the attractiveness of female faces applied to HF or LF filters. Based on the results, we divided face stimuli into four categories: (a) beauty condition for faces that received a high rating score in both HF and LF images, (b) normal condition for faces that received low scores in both HF and LF images, (c) HF beauty condition for faces with high HF low LF scores, and (d) LF beauty condition for faces with low HF scores and high LF scores. In experiment 1, participants were asked to rate the attractiveness of hybrid images in which the HF-filtered image and the LF-filtered image of a single face overlapped. The results showed that perceived attractiveness for HF beauty condition was higher than for LF beauty condition (beauty > HF beauty > LF beauty > normal condition). In experiment 2, real photo images of each beauty category were employed as stimuli, and results were consistent with experiment 1. The results of both experiments indicate that HF information has a stronger influence than LF information in the perception of female facial attractiveness.

keywords
공간주파수, 여성 얼굴 매력 지각, 하이브리드 이미지, spatial frequency, female facial attractiveness, hybrid image

참고문헌

1.

Bachmann, T. (2007). When beauty breaks down: Investigation of the effect of spatial quantisation on aesthetic evaluation of facial images. Perception, 36(6), 840-849.

2.

Berry, D. S., & Miller, K. M. (2001). When boy meets girl:Attractiveness and the five-factor model in opposite-sex interactions. Journal of Research in Personality, 35(1), 62-77.

3.

Berscheid, E., & Walster, E. (1974). Physical attractiveness1. Advances in Experimental Social Psychology, 7(1), 157-215. Academic Press.

4.

Berscheid, E., Dion, K., Walster, E., & Walster, G. W. (1971). Physical attractiveness and dating choice: A test of the matching hypothesis. Journal of Experimental Social Psychology, 7(2), 173-189.

5.

Boutet, I., Collin, C., & Faubert, J. (2003). Configural face encoding and spatial frequency information. Attention, Perception, & Psychophysics, 65(7), 1078-1093.

6.

Brady, T., & Oliva, A. (2012). Spatial frequency integration during active perception: perceptual hysteresis when an object recedes. Frontiers in Psychology, 3(1), 462.

7.

Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial Vision, 10(1), 433-436.

8.

Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327.

9.

Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36(2), 96-107.

10.

Calder, A. J., Young, A. W., Keane, J., & Dean, M. (2000). Configural information in facial expression perception. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 527-551.

11.

Cunningham, M. R., Barbee, A. P., & Pike, C. L. (1990). What do women want? Facialmetric assessment of multiple motives in the perception of male facial physical attractiveness. Journal of Personality and Social Psychology, 59(1), 61-72.

12.

Delplanque, S., N’diaye, K., Scherer, K., & Grandjean, D. (2007). Spatial frequencies or emotional effects?: A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis. Journal of Neuroscience methods, 165(1), 144-150.

13.

Enroth-Cugell, C., & Robson, J. D. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187(3), 517-522.

14.

Goffaux, V., & Rossion, B. (2006). Faces are “spatial”-holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1023-1039.

15.

Goffaux, V., Hault, B., Michel, C., Vuong, Q. C., & Rossion, B. (2005). The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Perception, 34(1), 77-86

16.

Goren, D., & Wilson, H. R. (2004). Differential impact of spatial frequency on facial expression and facial identity recognition. Journal of Vision, 4(8), 904-904.

17.

Guo, K., Liu, C. H., & Roebuck, H. (2011). I know you are beautiful even without looking at you: Discrimination of facial beauty in peripheral vision. Perception, 40(2), 191-195.

18.

Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behavioural Brain Research, 32(3), 203-218.

19.

Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223-233.

20.

Holmes, A., Winston, J. S., & Eimer, M. (2005). The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression. Cognitive Brain Research, 25(2), 508-520.

21.

Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture:Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, 198(1130), 1-59.

22.

Issa, N. P., Trepel, C., & Stryker, M. P. (2000). Spatial frequency maps in cat visual cortex. Journal of Neuroscience, 20(22), 8504-8514.

23.

Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological science, 1(2), 115-121.

24.

Langlois, J. H., Roggman, L. A., & Musselman, L. (1994). What is average and what is not average about attractive faces? Psychological Science, 5(4), 214-220.

25.

Maner, J. K., Kenrick, D. T., Becker, D. V., Delton, A. W., Hofer, B., Wilbur, C. J., & Neuberg, S. L. (2003). Sexually selective cognition: beauty captures the mind of the beholder. Journal of Personality and Social Psychology, 85(6), 1107-1120.

26.

Marlowe, C. M., Schneider, S. L., & Nelson, C. E. (1996). Gender and attractiveness biases in hiring decisions: Are more experienced managers less biased? Journal of Applied Psychology, 81(1), 11-21.

27.

O’Toole, A. J., Deffenbacher, K. A., Valentin, D., McKee, K., Huff, D., & Abdi, H. (1998). The perception of face gender: The role of stimulus structure in recognition and classification. Memory & Cognition, 26(1), 146-160.

28.

Osch, V. Y., Blanken, I., Meijs, M. H., & Wolferen, V. J. (2015). A group’s physical attractiveness is greater than the average attractiveness of its members: the group attractiveness effect. Personality and Social Psychology Bulletin, 41(4), 559-574.

29.

Palmer, S. E. (1999). Vision science: Photons to phenomenology. MIT press.

30.

Park, S., & Jung, W. (2006). The effect of spatial frequency filtering on facial expression recognition and age perception. The Korean Journal of Experimental Psychology, 18(4), 311-324.

31.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442.

32.

Perrett, D. I., Burt, D. M., Penton-Voak, I. S., Lee, K. J., Rowland, D. A., & Edwards, R. (1999). Symmetry and human facial attractiveness. Evolution and Human Behavior, 20(5), 295-307.

33.

Perrett, D. I., Lee, K. J., Penton-Voak, I., Rowland, D., Yoshikawa, S., Burt, D. M., & Akamatsu, S. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394(6696), 884-887.

34.

Peyrin, C., Chokron, S., Guyader, N., Gout, O., Moret, J., & Marendaz, C. (2006). Neural correlates of spatial frequency processing: A neuropsychological approach. Brain Research, 107(1)3, 1-10.

35.

Prazak, E. R., & Burgund, E. D. (2014). Keeping it real:Recognizing expressions in real compared to schematic faces. Visual Cognition, 22(5), 737-750.

36.

Rhodes, G., & Tremewan, T. (1996). Averageness, exaggeration, and facial attractiveness. Psychological Science, 7(2), 105-110.

37.

Rhodes, G., Hickford, C., & Jeffery, L. (2000). Sex typicality and attractiveness: Are supermale and superfemale faces super attractive? British Journal of Psychology, 91(1), 125-140.

38.

Rhodes, G., Proffitt, F., Grady, J. M., & Sumich, A. (1998). Facial symmetry and the perception of beauty. Psychonomic Bulletin & Review, 5(4), 659-669.

39.

Schaus, H. K., Stall, S., & O’Malley, M. (2014). Comparisons in a Group Decrease Perceived Physical Attractiveness. Sentience: The University of Minnesota Undergraduate Journal of Psychology, 9(1), 4-6

40.

Schettino, I. (2016). Filtered faces at the beauty contest: Spatial frequency analysis of facial attractiveness. Master’s thesis, University of Oslo, Norway.

41.

Sergent, J. (1984). An investigation into component and configural processes underlying face perception. British Journal of Psychology, 75(2), 221-242.

42.

Sergent, J., Ohta, S., MacDonald, B., & Zuck, E. (1994). Segregated processing of facial identity and emotion in the human brain: A PET study. Visual Cognition, 1(23), 349-369.

43.

Sigall, H., & Ostrove, N. (1975). Beautiful but dangerous:effects of offender attractiveness and nature of the crime on juridic judgment. Journal of Personality and Social Psychology, 31(3), 410-414.

44.

Singh, K. D., Smith, A. T., & Greenlee, M. W. (2000). Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI. Neuroimage, 12(5), 550-564.

45.

Thornhill, R., & Gangestad, S. W. (1993). Human facial beauty. Human Nature, 4(3), 237-269.

46.

Tootell, R. B., Silverman, M. S., Hamilton, S. L., Switkes, E., & De Valois, R. L. (1988). Functional anatomy of macaque striate cortex. V. Spatial frequency. Journal of Neuroscience, 8(5), 1610-1624.

47.

Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6(6), 624-631.

48.

Walster, E., Aronson, V., Abrahams, D., & Rottman, L. (1966). Importance of physical attractiveness in dating behavior. Journal of Personality and Social Psychology, 4(5), 508-516.

한국심리학회지: 인지 및 생물