바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

실험데이터 분석을 위한 선형 혼합효과 모형

Linear Mixed-Effects Model for Analyzing Experimental Data

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2020, v.32 no.2, pp.197-211
https://doi.org/10.22172/cogbio.2020.32.2.006
이우열 (충북대학교)

초록

본 논문은 반복측정 변량분석의 대안으로서 교차 무선효과를 가진 선형 혼합효과 모형을 소개한다. 두 종류의 선형 혼합효과 모형의 설정, 추정방법, 모형 비교방법, 추론방법에 관해 R패키지 중 하나인 lme4 패키지의 lmer 함수를 가지고 설명한다. 예제데이터를 통해 선형 혼합효과 모형의 용례를 보인다. 또한, 몬테카를로 시뮬레이션 실험을 통해 특정 상황에서 선형 혼합효과 모형과 변량분석 사이에서 가설검정 수행을 비교한다.

keywords
linear mixed-effects model, F1/F2 analysis, R package, repeated-measures ANOVA, 선형 혼합효과 모형, F1/F2분석, R패키지, 반복측정 변량분석

Abstract

This paper introduces a linear mixed-effects model with crossed random effects as an alternative to repeated measures analysis of variance (RM-ANOVA). With lmer function in the lme4 package, one of the R packages, two kinds of the linear mixed-effects model are described regarding the model specification, an estimation method, model comparison criteria, and an inference method. The use of the linear mixed-effects model is illustrated through an empirical example data. The performance of hypothesis testing is compared via a Monte Carlo simulation study between the mixed-effects model and variance of analysis framework.

keywords
linear mixed-effects model, F1/F2 analysis, R package, repeated-measures ANOVA, 선형 혼합효과 모형, F1/F2분석, R패키지, 반복측정 변량분석

참고문헌

1.

Ahn, J., Kim, T. H., & Choi, W. (2019). The effects of visual complexity and character structure on Hangul perception. The Korean Journal of Cognitive and Biological Psychology, 31, 135-146.

2.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412.

3.

Bae, S., & Lee, D. (2017). Individual differences in the morphological decomposition of Hanja words. The Korean Journal of Cognitive and Biological Psychology, 29, 455-462.

4.

Bae, S., & Yi, K. (2010). Processing of orthography and phonology in Korean word recognition. The Korean Journal of Cognitive and Biological Psychology, 22, 369-385.

5.

Bae, S., & Yi, K. (2016). The morphological processing of Korean compound words with Saisios. The Korean Journal of Cognitive and Biological Psychology, 28, 691-698.

6.

Bae, S., & Yi, K. (2019a). The influence of word type and compositionality on the word length effect in Korean. The Korean Journal of Cognitive and Biological Psychology, 31, 39-52.

7.

Bae, S., & Yi, K. (2019b). Individual differences in reading spaced and unspaced compound noun phrases. The Korean Journal of Cognitive and Biological Psychology, 31, 253-264.

8.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing:Keep it maximal. Journal of Memory and Language, 68, 255-278.

9.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4, Journal of Statistical Software, 67, 1-48.

10.

Choi, S., & Koh, S. (2012). The effects of real world knowledge and case-markers on semantic relation processing during Korean sentence reading: An eye-tracking study. The Korean Journal of Cognitive and Biological Psychology, 24, 89-105.

11.

Choi, W., Lee, C., & Nam, K. (2008). Cross-linguistic semantic priming effect for Korean-English unbalanced bilinguals. The Korean Journal of Cognitive and Biological Psychology, 20, 357-372.

12.

Choi, W., Lee, C., Kang, J., & Nam, K. (2015). The lexical inhibition of the phonological information in Korean visual word recognition. The Korean Journal of Cognitive and Biological Psychology, 27, 561-581.

13.

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335-359.

14.

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.

15.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge, UK:Cambridge University Press.

16.

Gordon, P. C., & Holyoak, K. J. (1983). Implicit learning and generalization of the “mere exposure” effect. Journal of Personality and Social Psychology, 45, 492-500.

17.

Kang, J., Nam, S., Lim, H., & Nam, K. (2016). ERP indices of Korean derivational prefix morphemes separated from the semantic and orthographic information. The Korean Journal of Cognitive and Biological Psychology, 28, 409-430.

18.

Kim, J., & Park, K. (2016). The implicit causality effect observed in Korean interpersonal verbs does not require causal connective. The Korean Journal of Cognitive and Biological Psychology, 28, 221-239.

19.

Koh, S., Hong, H., Yoon, S., & Cho, P. (2008). The frequency effect in Korean noun eojeols: An eye-tracking study. The Korean Journal of Experimental Psychology, 20, 21-37.

20.

Kwon, Y., & Nam, K. (2011). The relationship between morphological family size and syllabic neighborhoods density in Korean visual word recognition. The Korean Journal of Cognitive and Biological Psychology, 23, 301-319.

21.

Lee, H., & Choi, W. (2019). Predictability effects modulated by age during sentence reading: An eye-tracking study. The Korean Journal of Cognitive and Biological Psychology, 31, 17-38.

22.

Lee, J.-H. (2009). Anaphoric reference resolution in expository text: the effects of demonstratives type. The Korean Journal of Psychology: General, 28, 547-569.

23.

Lee, K. E., Woo, Y.-H., & Lee, H.-W. (2019). Translation priming effects in unbalanced Korean-English bilinguals. The Korean Journal of Cognitive and Biological Psychology, 31, 211-221.

24.

Lee, Y., & Kwon, N. (2012). The effect of information status of noun phrase on Korean sentence reading: An eye-tracking study. The Korean Journal of Cognitive and Biological Psychology, 24, 149-166.

25.

Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.

26.

McNeish, D., Stapleton, L. M., & Silverman, R. D. (2016). On the unnecessary ubiquity of hierarchical linear modeling. Psychological Methods, 22, 114-140.

27.

Molenberghs, G., & Verbeke, G. (2007). Likelihood ratio, score, and Wald tests in a constrained parameter space. The American Statistician, 61, 22-27.

28.

Nam, S., Baik, Y., Lim, H., & Nam, K. (2014). Different tme courses of orthographic, morphological, and semantic activation during Korean prefixed derivational word recognition. The Korean Journal of Cognitive and Biological Psychology, 26, 1-20.

29.

Noh, S. R., So, Y.-S., & Kim, M. (2017). Aging and situation models in Korean sentence comprehension. The Korean Journal of Cognitive and Biological Psychology, 29, 189-196.

30.

Park, K., Yi, K., Abe, J., & Liu, Y. (2008). A cross-linguistic study on representation and processing of Hanja words:Reading aloud. The Korean Journal of Experimental Psychology, 20, 179-202.

31.

Pinheiro, J., & Bates, D. (2000). Mixed-effects models in S and S-PLUS. New York, NY: Springer.

32.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

33.

Raaijmakers, J. G. W., Schrinemakers, J. M. C., & Gremmen, F. (1999). How to deal with “the language-as-fixed-effect fallacy”: Common misconceptions and alternative solutions. Journal of Memory and Language, 41, 416-426.

34.

Raaijmakers, J. G. W. (2003). A further look at the “language-as-fixed-effect fallacy” Canadian Journal of Experimental Psychology, 57, 141-151.

35.

Raudenbush, S. & Bryk, A. (2002). Hierarchical linear models:Applications and data Analysis methods. New York, NY:Sage.

36.

Ryu, J., Nam, K., Kim, D., & Baik, Y. (2016). Do Korean learners of English use spelling-to-sound regularity information during English word recognition?. The Korean Journal of Cognitive and Biological Psychology, 28, 1-24.

37.

Singmann, H., & Kellen, D. (2020). An Introduction to Mixed Models for Experimental Psychology. In D. H. Spieler & E. Schumacher (Eds.), New Methods in Cognitive Psychology (pp.4-31). New York, NY: Routledge.

38.

Snijders, T., & Bosker, R. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed). Thousand Oaks, CA: Sage.

39.

Song, H., & Lee, W. (2009). The influence of discourse information on Korean adults’ sentence processing. Language Facts and Perspectives. 24, 141-154.

40.

Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499.[http://arxiv.org/pdf/1308.5499.pdf]

41.

Yi, K., & Bae, S. (2009). Morphological processing of native Korean words. The Korean Journal of Cognitive and Biological Psychology, 21, 233-247.

42.

Yi, K., Park, K., Abe, J., Liu, Y., & Zhang, Y. (2010). A cross-linguistic study on representation and processing of Hanja words: Naming and lexical decision. The Korean Journal of Cognitive and Biological Psychology, 22, 277-291.

43.

Yoon, S., & Koh, S. (2010). The effect of age of acquisition on fixation durations in Korean reading: An eye tracking study. The Korean Journal of Cognitive and Biological Psychology, 22, 129-142.

44.

Yoon, S. O., Kang, W.-S., An, J., & Koh, S. (2010). The frequency and length effect on eye fixation in Korean reading. The Korean Journal of Cognitive and Biological Psychology, 22, 215-232.

45.

Zhang, D., & Lin, X. (2008). Variance component testing in generalized linear mixed models for longitudinal/clustered data and other related topics. In D. B. Dunson (Ed.)Random effect and latent variable model selection. (pp.19-36). New York, NY: Springer.

한국심리학회지: 인지 및 생물