바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

단서 상충 상황에서 국소 부등 정보에 의한 상대적 입체시 깊이의 효과

The Effect of Relative Stereo Depth Provided by Local Disparity in a Cue-Conflict Situation

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2005, v.17 no.2, pp.185-202
감기택 (강원대학교)

초록

관찰자의 정면에서 좌우로 움직이고 있는 진자를 한쪽 눈에만 빛의 강도를 감소시키는 필터(neutral density filter)를 낀 채 두 눈으로 진자를 바라보면 진자가 타원형 경로로 운동하는 것으로 지각된다. 이와 같은 전형적인 Pulfrich 상황에서 진자의 물리적인 경로 바로 뒤쪽에 불투명 표면을 제시하면 단서 상충 상황이 발생된다: Pulfrich 효과에 의한 진자의 깊이는 가림 단서에 의한 깊이 정보와 상충된다. 이 상황에서 대부분의 관찰자들은 타원형으로 지각되는 진자의 경로가 수축되어 표면 앞쪽으로 운동하는 것으로 지각했다(Perception, 33, (2004). 1201-1213). 본 연구에서는 이 상황에서 가림 단서의 깊이 정보와 상반되는 상대적인 입체시 깊이를 추가적으로 제공한 후 이 정보에 의해 진자의 지각된 원경로가 변화되는 지를 살펴보았다. 표면 내부에 국소 부등 정보를 제공하기 위해 실험 1에서는 표면 폭을 변화시켰고, 실험 2에서는 표면에 무선점 패턴을 제시하여 그 결과로 표면과 진자의 상대적인 입체시 깊이가 추출될 수 있도록 표면 속성을 조작하였다. 실험결과 최원점의 지각된 깊이에서 큰 개인차가 발견되었다. 관찰자들 중 약 25-35%는 표면 폭이나 무선점 패턴의 제시 여부와 무관하게 가림 단서에 의해 제공되는 깊이 정보와 일치되는 방식으로 진자가 표면 앞쪽으로 운동하는 것으로 지각하였다. 그러나 나머지 대부분의 관찰자들은 표면 폭이 줄어들수록, 그리고 표면에 무선점 패턴의 밀도가 증가할수록 상대적인 입체시 정보에 의한 깊이 정보와 일치되는 방식으로 진자가 표면 뒤쪽으로 운동하는 것으로 지각하였다. 이러한 결과는 가림 단서와 상반되는 상대적인 입체시 깊이에 의해서 가림 단서의 효율성이 약화되었음을 시사하며, 상대적인 입체시 깊이정보는 양안 부등 정보의 보간 과정 이전에 추출됨을 시사한다.

keywords
깊이 단서의 상충, 양안 부등, Pulfrich 현상, 상대적 입체시 깊이, depth cue conflict, binocular disparity, the Pulfrich phenomenon, relative stereodepth, depth cue conflict, binocular disparity, the Pulfrich phenomenon, relative stereodepth

Abstract

A cue-conflict situation can be created in the typical Pulfrich setting when an opaque surface is placed just behind the physical path of the pendulum: the depth of the pendulum from the Pulfrich effect is in conflict with that from occlusion. From this experimental setting, most observers reported that the far path seems to shrink and the pendulum was perceived to move in front of the surface (Perception, 33, (2004) 1201-1213). In the present study, it is examined whether the additional relative stereo depth by local disparity, which is contradicted with depth from occlusion, could change the perceived path of the Pulfrich pendulum. In order to provide the local disparity information in the inner region of the surface, thereby providing the relative stereodepth between the pendulum and the surface, the width of the surface and the density of the texture attached on the surface were varied in the experiment 1 and experiment 2, respectively. A large individual difference on the perceived depth of the farthest point of the path was found. About 25-35% of the observers reported that in all conditions, the pendulum was perceived to rotate in front of the surface, which was predicted by the depth information from the occlusion. However, most observers perceived that the pendulum was more likely to rotate behind the surface as the width was narrower and the density of the random texture was increased. These results suggest that the efficiency of occlusion might be weakened by the conflicting relative stereodepth, and the relative stereo depth might be extracted before depth interpolation process from the local disparity.

keywords
깊이 단서의 상충, 양안 부등, Pulfrich 현상, 상대적 입체시 깊이, depth cue conflict, binocular disparity, the Pulfrich phenomenon, relative stereodepth, depth cue conflict, binocular disparity, the Pulfrich phenomenon, relative stereodepth

참고문헌

1.

(2003) 배경 패턴의 밀도에 의한 Pulfrich 효과에서의 깊이 변화,

2.

(2000) Temporal dependencies in resolving monocular and binocular cue conflict in slant perception,

3.

(2001) Stereoacuity thresholds in the presence of a reference surface,

4.

Anstis,S.,, (1987) Visual inertia in apparent motion,

5.

(2001) Joint-encoding of motion and depth by visual cortical neurons neural basis of the Pulfrich effect,

6.

(2000) Textured backgrounds alter perceived speed,

7.

(1979) How does binocular delay give information about depth? Vision Research,

8.

(1989) A physiological correlate of the Pulfrich effect in cortical neurons of the cat,

9.

(1985) Motion perception during dichoptic viewing of moving randomdot stereograms,

10.

(1999) Modeling the combination of motion and vergence angle cues to visual depth,

11.

(1968) Perception of slant when perspective and stereopsis conflict:experiments with aniseikonic lenses,

12.

(1983) Perceived velocity as a function of reference mark density,

13.

(1981) From Images to Surfaces A Computational Study of the Human Early Visual System, MIT Press

14.

(2002) The stereoscopic anisotropy-individual differences and underlying mechanisms.,

15.

(1995) Binocular vision and stereopsis, Oxford University

16.

(2002) Seeing in depth,

17.

(2002) What determines visual cue reliability? ,

18.

(1998) Visual inertia of rotating 3-D objects,

19.

(1971) Foundations of cyclopean perception, University of Chicago Press

20.

(1969) Short term visual memory and the Pulfrich phenomenon,

21.

(1974) Sight and Mind, Oxford University Press

22.

(2004) An opaque surface influences the depth from the Pulfrich phenomenon,

23.

(1991) Influence of remote objects on local depth perception,

24.

(1992) Depth discrimination of a line is improved by adding other nearby lines,

25.

(1995) Measurement and modeling of depth cue combination in defense of weak fusion,

26.

(1960) The magnitude of the pulfrich stereo-phenomenon as a function of target velocity Journal of Experimental Psychology,

27.

(1951) The magnitude of the Pulfrich stereophenomenon as a function of distance of observation,

28.

(1982) Vision, San Francisco

29.

(1996) The Influence of target angular velocity on visual latency difference determined using the rotating Pulfrich effect,

30.

(2003) Spatio-temporal dynamics of depth propagation on uniform region. ,

31.

(1995) The perception of 3-D structure from contradictory optical patterns,

32.

(2000) Direction biasing by brief apparent motion stimuli,

33.

(1922) Die stereoskopie im Dienste der isochromen und heterochromen photometrie,

34.

(1997) A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena,

35.

(1983) Extrapolation of motion path in human visual perception,

36.

(1986) Necessary conditions for the perception of motion in depth,

37.

(1970) Stereopsis and stereoblindness,

38.

(1971) Anomalous stereoscopic depth perception,

39.

(1972) Intensity versus adaptation and the Pulfrich stereophenomenon,

40.

(2001) Effects of disparity-perspective cue conflict on depth perception,

41.

(1997) Relationship between binocular disparity and motion parallax in surface detection,

42.

(2002) A planar and a volumetric test for stereoanomaly,

43.

(2002) Bi-stability in perceived slant when binocular disparity and monocular perspective specify different slants Journal of Vision,

44.

(1979) Cooperative neural processes involved in stereoscopic acuity,

45.

(1995) On the accuracy of surface reconstruction from disparity information,

한국심리학회지: 인지 및 생물