바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

항유해 작용과 관련된 편도체의 신경회로 개관: 아편계와 카나비노이드계의 작용 원리에 관하여

Review on Amygdala Neural Circuitry of Antinociception: On Actions of Opioids and Endocannabinoids

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2010, v.22 no.3, pp.387-404
https://doi.org/10.22172/cogbio.2010.22.3.008
신맹식 (중앙대학교)

초록

스트레스 환경에 직면하는 유기체는 흔히 통각에 대한 민감성의 감소를 포함하여 여러 양상의 공포반응을 나타낸다. 항유해 작용을 담당하는 주요 뇌 부위는 중뇌수도주변회백질, 연수 및 편도체를 포함하는, 이른 바, 편도체-뇌간 회로이다. 부적 정서와 관련된 정보를 처리하는 편도체 내의 항유해 작용 메카니즘과 관련하여, 선행 리뷰에서 본저자는 주로 아편계를 바탕으로 하는 신경회로를 중심으로 논의를 전개하였다. 하지만, 최근의 많은 연구 자료들은 유기체가 위협적인 환경에 노출될 때 편도체를 포함한 항유해계에서 내인성 카나비노이드도 분비되어 통각을 감소시키는 데에 중요함을 강조하고 있다. 이에, 현행의 리뷰는 이런 최근의 경향을 반영하여 더 포괄적인 설명력을 가진 신경 모델을 제시하기 위하여 진행되었다. 본리뷰의 주요 내용은, 먼저, 편도체의 항유해 작용과 관련하여, 중심핵(CeA) 내의 투사뉴런의 활성화가 항유해 효과의 발생에 결정적인데, 이 뉴런의 활동성은 기저외측핵군(BLA)으로부터 주어지는 억제성 입력과 흥분성 입력 간의 신경통합에 의해 결정된다는 것이다. 또한, 억제성 입력에 대한 조절은 BLA에서 분비되는 아편물질이, 그리고 흥분성 입력에 대한 조절은 BLA에서 분비되는 카나비노이드가 담당한다고 보고 있다. 새로 제안된 신경모델은 편도체의 항유해 작용과 관련하여 아편물질과 카나비노이드가 보이는 기능적 유사성과, 양자 간의 상승작용 및 상호작용 등을 포괄하여 설명할 수 있는 틀을 제공한다.

keywords
antinociception, pain control, amygdala, (endo)cannabinoid, opioid, neural circuitry, 항유해 작용, 통각 조절, 편도체, 카나비노이드, 아편물질, 신경회로

Abstract

Organisms encountering a threatening environment often express various fear responses including antinociception, or hypoalgesia. Main brian structures or regions responsible for antinociception are the PAG, the RVM and the amygdala that primarily compose the amygdala-brain stem circuitry. Regarding antinociceptive mechanisms of the amygdala that is important for processing negative emotional information, the author has previously suggested a potent neural model mainly focusing on actions by opioid systems. On the other hand, a considerable amount of recent empirical data have shown important contributions of endocannabinoids released in the antinociceptive system including the amygdala to controlling pain in organisms facing environmental stressors. Hence, the present review was processed to reflect this trend of neuropsychology and present a more comprehensive neural model. Important points of the present discussions are as follows. First, activation of neurons in the central nucleus of the amygdala (CeA) that project to the brain stem is the critical factor for producing antinociception from the amygdala, and the activity of the CeA cells is determined by a neural integration between inhibitory and excitatory inputs given from the basolateral complex of the amygdala (BLA). Second, these inhibitory and excitatory inputs are currently suggested to be regulated by opioids and endocannabinoids that are both released in the BLA under stress, respectively. Third, the present new neural model of amygdala antinociceptive actions gives comprehensive accounts for a variety of characteristics shared by opioids and endocannabinoids, such as functional similarities, synergistic actions and interactions.

keywords
antinociception, pain control, amygdala, (endo)cannabinoid, opioid, neural circuitry, 항유해 작용, 통각 조절, 편도체, 카나비노이드, 아편물질, 신경회로

참고문헌

1.

서동오, 이연경, 최준식 (2006). 공포의 생성과 소멸: 파블로프 공포조건화의 뇌회로를 중심으로. 한국심리학회지:실험, 18(1), 1-19.

2.

신맹식 (2008). 뇌의 항유해작용 기제에 관한 개관: 편도체-뇌간 회로를 중심으로. 한국심리학회지: 실험, 20(2), 73-94.

3.

Atweh, S. F., & Kuhar, M. J. (1977). Autoradiographic localization of opiate receptors in rat brain III. The telencephalon. Brain Research, 134, 393-405.

4.

Basbaum, A. I., & Fields, H. L. (1978). Endogenous pain control mechanisms: Review and hypothesis. Annals of Neurology, 4, 451-462.

5.

Basbaum, A. I., & Fields, H. L. (1984). Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annual Review of Neuroscience, 7, 309-338.

6.

Behbehani, M. M., & Pert, A. (1984). A mechanism for the analgesic effect of neurotensin as revealed by behavioral and electrophysiological techniques. Brain Research, 324, 35-42.

7.

Bellgowan, P. S., & Helmstetter, F. J. (1998). The role of mu and kappa opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia. Brain Research, 279, 83-89.

8.

Butler, R. K., Rea, K., Lang, Y., Gavin, A. M., & Finn, D. P. (2008). Endocannabinoid- mediated enhancement of fear-conditioned analgesia in rats: opioid receptor dependency and molecular correlates. Pain, 140, 491-500.

9.

Cannich, A., Wotjak, C.T., Kamprath, K., Hermann, H., Lutz, B., & Marsicano, G. (2004). CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learning and Memory, 11, 625-632.

10.

Carlson, N. R. (2002). Foundations of Physiological Psychology (5th Ed.), pp. 355-395. Allyn and Bacon, MA: A Person Education Company.

11.

Collins, D. R., & Pare, D. (1999). Reciprocal changes in the firing probabilities lateral and central medial amygdala neurons. Journal of Neuroscience, 19(2), 836-844.

12.

Connell, K., Bolton, N., Olsen, D., Piomelli, D., & Hohmann A.G. (2006). Role of the basolateral nucleus of the amygdala in endocannabinoid-mediated stress-induced analgesia. Neuroscience Letters, 397, 180-184.

13.

De Olmos, J., Alheid, G.F., & Beltramino, C.A (1985). Amygdala, in G. Paxinos (Eds.), The rat nervous system: I. Forebrain and midbrain, Academic Press, New York.

14.

Dodd, J., Kelly, J. S., & Said, S. I. (1979). Excitation of CA1 neurons of the rat hippocampus by the octapeptide vasoactive intestinal polypeptide (VIP). British Journal of Pharmacology, 66(1), 125.

15.

Elphick, M. R., & Egartova, M. (2001). The neurobiology and evolution of cannabinoid signalling. Philosophical Transactions of the Royal Society of Lond, Series B, Biological Sciences, 356, 381-408.

16.

Fields, H. L., Heinricher, M. M., & Mason, P. (1991). Neurotransmitters in nociceptive modulatory circuits. Annual Review of Neuroscience, 14, 219-245.

17.

Gray, T. S., Cassell, M. D., & Williams, T. H. (1982). Synaptology of three peptidergic neuron types in the central nucleus of the rat amygdala. Peptides, 3, 273-281.

18.

Gray, T. S., & Magnuson, D. J. (1992). Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides, 13, 451-460.

19.

Hasanein, P., Parviz., M., Keshavarz., M., & Javanmardi., K. (2007). CB1 receptor activation in the basolateral amygdala produces antinociception in animal models of acute and tonic nociception. Clinical and Experimental Pharmacology & Physiology, 34, 439-449.

20.

Helmstetter, F. J., & Bellgowan, P. S. (1994). Hypoalgesia in response to sensitization during acute noise stress. Behavioral Neuroscience, 108(1), 177-185.

21.

Helmstetter, F. J., Bellgowan, P. S. F,. & Poore, L. H. (1995). Microinfusion of mu but not delta or kappa agonists into the basolateral amygdala results in inhibition of the tail flick reflex in pentobarbital-anesthetized rats. Journal of Pharmacology & Experimental Therapeutics, 275, 381-388.

22.

Helmstetter, F. J., & Tershner, S. A. (1994). Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociception but not cardiovascular aversive conditional responses. Journal of Neuroscience, 14(11), 7099-7108.

23.

Helmstetter, F. J., Tershner, S. A., Poore, L. H., & Bellgowan, P. S. F. (1998). Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Brain Research, 779, 104-118.

24.

Herkenham, M, Lynn, A.B., Johnson, M.R., Melvin, L.S., De Costa, B.R, & Rice, K.C. (1991). Characterization and lateralization of cannabinoid receptors in the rat brain: A quantitative in vitro autoradiographic study. Journal of Neuroscience, 11, 563-583.

25.

Hohmann, A. G., Martin, W. J., Tsou, K., & Walker, J. M. (1995). Inhibition of noxious stimulus-evoked activity of spinal cord dorsal horn neurons by the cannabinoid WIN 55, 212-2. Life Sciences, 56, 2111-2118.

26.

Hohmann, A. G., Suplita, R. L., Bolton, N. M., Neely, M. H., Fegley, D., Mangieri, R., Krey, J. F., Walker, M., Holmes, P.V., Crystal, J. D., Duranti, A., Tontini, A., Mor, M., Tarzia, G., & Piomelli,D.(2005). An endocannabinoid mechanism for stress-induced analgesia. Nature, 435, 1108-1112.

27.

Hopkins, D. A., & Holstege, G. (1978). Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Experimental Brain Research, 32, 529-547.

28.

Howlett, A. C., Blume, L. C., & Dalton, G. D. (2010). CB1 cannabinoid receptors and their associated proteins. Current Medicinal Chemistry, 17(14), 1382-1393.

29.

Kalivas, P. W., Gau, B. A., Nemeroff, C. B., & Prange, A. J., Jr. (1982). Antinociception after microinjection of neurotensin into the central amygdaloid nucleus of the rat. Brain Research, 243, 279-286.

30.

Kalyuzhny, A. E., & Wessendorf, M. W. (1998). Relationship of mu- and delta-opioid receptors to GABAergic neurons in the central nervous system, including antinociceptive brainstem circuits. The Journal of Comparative Neurology, 392, 528-547.

31.

Katona, I., Rancz, E.A., Acsady, L., Ledent, C., Mackie, K., Hajos, N., & Freund, T.F. (2001). Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. The Journal of Neuroscience, 21(23), 9506-9518.

32.

Kurjak M., Hamel A. M., Allescher H.D., Schucdziarra V., & Storr M. (2008). Differential stimulatory effects of cannabinoids on VIP release and NO synthase activity in synaptosomal fractions from rat ileum. Neuropeptides, 42(5-6), 623-632.

33.

Li, A. H., Hwang, H.M., Tan, P. P., Wu, T., & Wang, H. L. (2001). Neurotensin excites periaqueductal gray neurons projecting to the rostral ventromedial medulla. Journal of Neurophysiology, 85(4), 1479-1488.

34.

Manning, B. H. (1998). A lateralized deficit in morphine antinociception after unilateral inactivation of the central amygdala. Journal of Neuroscience, 18(22), 9453-70.

35.

Manning, B. H., Martin, W. J., & Meng, I. D. (2003). The rodent amygdala contributes to the production of cannabinoid-induced antinociception. Neuroscience, 120, 1157-1170.

36.

Mansour A., Khachaturian H., Lewis M. E., Akil H., & Watson S. J. (1987). Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain. Journal of Neuroscience, 7, 2445-2464.

37.

Manzanares, J., Corchero, J., Romero, J., Fernandez-Ruiz, J. J., Ramos, A., Fuentes, J. A. (1999). Pharmacological and biochemical interaction between opioids and cannabinoids. Tends in Pharmacological Sciences, 20, 287-294.

38.

Massi, P. Vaccani, A., Romorini, S. & Parolaro, D. (2001). Comparative characterization in the rat of the interaction between cannabinoids and opiates for their immunosopressive and analgesic effects. Journal of Neuroimmunology, 117(1-2), 116-124.

39.

McGaraughty, S., Farr, D.A., & Heinricher, M. M. (2004). Lesions of the periaqueductal gray disrupt input to the rostral ventromedial medulla following microinjections of morphine into the medial or basolateral nuclei of the amygdala. Brain Research, 1009, 223-227.

40.

Niteckam L., & Frotsch, M. (1988). Organization and synaptic interconnections of GABAergic and cholinergic elements in the rat amygdaloid nuclei: Single and double- immunolabelling studies. The Journal of Comparative Neurology, 279, 470-488.

41.

Pan, Z. Z (1998). Mu-opposing actions of the kappa-opioid receptor. Trends in Pharmacology and Sciences, 19, 94-98.

42.

Pare, D., & Smith, Y. (1993). The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience, 57, 1077-1090.

43.

Reichling, D. B., Kwiat, G. C., & Basbaum, A. I. (1988). Anatomy, physiology and pharmacology of the periaqueductal gray contribution to antinociceptive controls. Progress in Brain Research, 77, 31-46.

44.

Pertwee, R. G. (2001). Cannabinoid receptors and pain. Progress in Neurobiology, 63(5), 569-611.

45.

Phillis, J. W., Kirkpatrick, J. R., & Said, S. I. (1978). Vasoactive intestinal peptide excitation of central neurons. Canadian Journal of Physiology & Pharmacology, 56, 337-340.

46.

Poore, L. H., & Helmstetter, F. J. (1994). Forebrain modulation of nociceptive reflex: Effects of GABA antagonists in the amygdala. Society for Neuroscience Abstracts, 20, 767.

47.

Reche, I., Fuentes J. A., & Ruiz-Gayo, M. (1996). Potentiation of delta 9-tetrahydrocannabinol- induced analgesia by morphine in mice: involvement of mu- and kappa-opioid receptors. European Journal of Pharmacology, 318(1), 11-16.

48.

Rizvi, T. A., Ennis, M., Behbehani, M. M., & Shipley, M. T. (1991). Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: Topography and reciprocity. The Journal of Comparative Neurology, 303, 121-131.

49.

Roberts, G. W., & Woodhams, P. L., Polak, J. M., & Crow, T. L. (1982). Distribution of neuropeptides in the limbic system of the rat: The amygdaloid complex. Neuroscience, 7,(1), 99-131.

50.

Shin, M.-S. (2002). Neuropeptide circuitry of the amygdala related to antinociception. Dissertation for Ph. D. at University of Wisconsin- Milwaukee.

51.

Shin, M.-S. (2005). Vasoactive intestinal peptide in the amygdala inhibits tail flick reflexes in rats. Brain Research, 1040, 197-201.

52.

Shin M. -S., Bailey, D. J., Hillard, C. J., & Helmstetter, F. J. (2008). Down regulating mu receptors in the basolateral complex of amygdala prevents antinociception in the rat. The Korean Journal of Experimental Psychology, 20(4), 285-301.

53.

Shin, M.-S., & Helmstetter, F. J. (1998). Effects of selective down-regulation of mu receptors in the basolateral amygdala with antisense oligonucleotides on antinociception. Society for Neuroscience Abstracts, 24, 447.1.

54.

Shin, M.-S, & Helmstetter, F. J. (2000). Pretreatment of the central, but not the basolateral, amygdala with muscimol blocks induction of mu-related antinociception following application of DAMGO. Society for Neuroscience Abstracts, 26, 244.12.

55.

Shin, M.-S., & Helmstetter, F. J. (2001). Vasoactive intestinal peptide interactions with mu opioids in the basolateral amygdala during antinociception. Society for Neuroscience Abstracts, 27, 509.16.

56.

Shin, M.-S., & Helmstetter, F. J. (2005). Antinociception following application of DAMGO to the basolateral amygdala results from a direct interaction of DAMGO with mu opioid receptors in the amygdala. Brain Research, 1064, 56-65.

57.

Smith, F. L., Cichewicz, D., Martin, Z. L., & Welch, S. P. (1998). The enhancement of morphine antinociception in mice by delta 9-tetrahydrocannabinol. Pharmacology, Biochemistry, and Behavior, 60(2), 559-566.

58.

Tershner, S. A., & Helmstetter, F. J. (2000). Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray. Brain Research, 865(1), 17-26.

59.

Young, W. S., & Kuhar, M. J. (1981). Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Research, 206, 273-285.

60.

Vigano, D. Rubino, T. R., & Parolaro, D. (2005). Molecular and cellular basis of cannabinoid and opioid interactions. Pharmacology, Biochemistry and Behavior, 81, 360-368.

61.

Walker, J. M., & Huang, S. M. (2002). Endocannabinoids in pain modulation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 66(2-3), 235-242.

62.

Zhu, P. J. & Lovinger, D. M. (2005). Retrograde cannabinoid signaling in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala. The Journal of Neuroscience, 25(26), 6199-6207.

63.

Zubieta, J-K., Smith, Y. R., Bueller, J. A., Xu, Y., Kilbourn, M. R., Jewett, D.M., Meyer, C. R., Koeppe, R. A., Stohler, C.S. (2001). Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science, 293, 311-315.

한국심리학회지: 인지 및 생물