바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

반응행위에 미치는 언어자극의 간섭효과: 사건관련전위 연구

Interference Effect of Language Stimuli on Response Action: An ERP study

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2011, v.23 no.3, pp.393-409
https://doi.org/10.22172/cogbio.2011.23.3.006
리창림 (부산대학교)
정명영 (부산대학교)
이동훈 (부산대학교)
  • 다운로드 수
  • 조회수

초록

본 연구에서는 행위를 기술하는 언어적인 표현을 이해하는 과정에서 일어나는 운동 모사(motor simulation)가 실제 운동 산출에 미치는 영향을 행동 반응 분석 및 뇌파 분석을 통해 알아보고자 하였다. 본 실험에 참가하기 전, 실험 참가자는 시각적 자극의 색깔에 따라 두 가지 행동 반응(노란색-버튼 누르기, 파란색-페달 밟기)을 산출하도록 학습하였다. 본 실험에서는 각각의 행동 반응을 요구하는 시각적 자극은 각각 두 색깔로 표시된 반응 행동을 지시하는 명령문(버튼을 눌러라, 페달을 밟아라)과 중립자극(&&& &&&)으로 제시되었고, 실험 참가자는 자극의 내용을 무시하고, 오직 자극의 색깔에 의해 결정된 행동 반응을 수행하도록 지시 받았다. 실험 조건은 자극의 색깔에 의해 결정된 반응 행동과 자극의 내용의 일치성 유무에 따라 일치 조건, 불일치 조건, 중립 조건으로 구성되었다. 행동 데이터 분석 결과, 반응시간 및 오류율에서 자극-반응 일치성 여부에 따른 일반적인 스트룹 효과를 확인할 수 있었고, 각각의 행위 조건에 따라 중립조건을 기준으로 촉진 및 방해효과를 관찰하였다. 측정된 뇌파 자료는 자극제시 시점을 기준으로 -100ms에서 800ms 구간에 대하여 운동 피질 부위의 사건관련전위(event-related potential, ERP)를 구한 다음 통계 분석을 실시한 결과, 중립 자극에 비해, 행위 지시어의 효과는 자극제시 후 150-250 ms 구간에서는 보다 적은 정적 파형으로, 450-550 ms 구간에서 보다 큰 부적 파형으로 나타났다. 행위 지시어와 요구되는 행동 반응의 일치 정도에 따른 간섭효과는 N400 구간에서 각각의 운동 피질 영역에서 관찰되었다. 본 연구의 결과는 행위를 기술하는 언어자극 이해과정에서 생기는 운동 모사(motor simulation)은 운동 피질의 활성화를 비교적 빠르고 자동적으로 일으키며, 이후 뒤따르는 반응 행위와 일치 여부에 따라 촉진 및 방해효과를 일으킴을 보여주었다. 이러한 연구 결과는 언어의 이해가 감각-운동 정보의 모사를 통해 이루어지며, 따라서, 현재의 감각-운동 행위와 역동적으로 상호작용한다는 체화된 인지(Embodied Cognition) 이론을 지지하는 증거로 해석될 수 있다.

keywords
운동 피질, 뇌파, 사건전위분석, 스트룹 효과, 체화된 인지, motor cortex, EEG, ERP, Stroop effect, Embodied cognition

Abstract

The purpose of the present study was to investigate the influence of motor simulation during understanding of action phrases on the actual motor execution using behavior response measures and electroencephalogram (EEG). Subjects were trained to produce one of two action responses depending on the color of a cue stimulus(yellow - pressing a button, blue-stepping on a pedal). In the main experiment, the stimuli directing each action response were embedded in the action phrases, “press a button” and “step on a pedal”, or in several meaningless symbols(e.g., &&& &&&), and participants were instructed to disregard the semantic meaning of the stimuli and instead to respond according to their color. Experimental conditions consisted of congruent, incongruent, and neutral conditions regarding the correspondence of the semantic meaning of the stimuli with the action response required by their color. The analysis of behavior responses showed a typical Stroop effect with facilitation for congruent trials and interference for incongruent trials in comparison to neutral trials. For analysis of EEG data, event-related potentials(ERPs) were computed for a time window of-100 to 800ms relative to the presentation time of the stimuli. The ERP results showed that the action phrase decreased positivity during the time window 150–250ms and increased negativity from 450–550ms. Interference between the congruent condition and the incongruent condition were observed in the time window of 450-550ms. Our results indicate that motor simulation during action understanding occurs very rapidly and automatically, and then evokes facilitation and interference later according to its correspondence to the following action execution. Therefore, our results support the Embodied Cognition theories which claim that language understanding is based on the simulation of sensory-motor information, and dynamically interacts with current sensory-motor behavior.

keywords
운동 피질, 뇌파, 사건전위분석, 스트룹 효과, 체화된 인지, motor cortex, EEG, ERP, Stroop effect, Embodied cognition

참고문헌

1.

Aziz-Zadeh L, Iacoboni M, Zaidel E, Wilson S, & Mazziotta J (2004). Left hemisphere motor facilitation in response to manual action sounds. Eur. J. Neurosci, 19(9), 2609-12.

2.

Aziz-Zadeh, L., & Damasio, A. (2008). Embodied semantics for actions: Findings from functional brain imaging. Journal of Physiology-Paris, 102 (1-3), 35-39.

3.

Baber H. A, & Kutas M (2007). Interplay between computational models and cognitive electrophysiology in visual word recognition. Brain Research Reviews, 53(1), 98-123.

4.

Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol. 59, 617-645.

5.

Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364, 1281-1289.

6.

Borghi, A. M., and Scorolli, C. (2009). Language comprehension and hand motion simulation. Hum. Mov. Sci. 28, 12-27.

7.

Boulenger V, Roy AC, Paulignan Y, Deprez V, & Jeannerod M, Nazir TA. (2006). Cross-talk between language processes and overt motor behavior in the first 200 ms of processing. J Cogn Neurosci, 18(10), 1607-1615.

8.

Buccino G, Riggio L, Melli G, Binkofski F, Gallese V, & Rizzolatti G (2005). Listening to action related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Cogn. Brain Res, 24, 355 -363.

9.

Duncan-Johnson, C. C., & Kopell, B. S. (1981). The Stroop effect: Brain potentials localize the source of interference. Science, 214, 938- 940.

10.

Fischer, M., and Zwaan, R. (2008). Embodied language: a review of the role of the motor system in language comprehension. Q. J. Exp. Psychol. 61, 825-850.

11.

Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455-479.

12.

Glenberg M, & Michael P. Kaschak (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558-565.

13.

Hanslmayr, S., Pastotter, B., Bauml, K. H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215-225

14.

Hauk O, Johnsrude I, & Pulvermuller F (2004). Somatotopic Representation of Action Words in Human Motor and Premotor Cortex. Neuron, 41, 301-307.

15.

Hauk O, Keil A, Elbert T, & Muller M.M. (2002). Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG. J. Neurosci. Methods, 113(2), 111-122.

16.

Hauk O, Shtyrov Y, & Pulvermuller F (2008). The time course of action and action-word comprehension in the human brain as revealed by neurophysiology. J. Physiol. Paris, 102(1-3), 50-58.

17.

Ilan, A. B., & Polich, J. (1999). P300 and response time from a manual Stroop task. Clinical Neurophysiology, 110, 367-373.

18.

Kutas M, & Hillyard SA (1980). Event-related brain potentials to semantically inapproriate and surprisingly large words. Biol Psychol, 11(2), 99-116.

19.

Kutas M, & Hillyard SA (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307, 161-163.

20.

Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701 -711.

21.

MacLeod, C. M. (1991). Half a century on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163-203.

22.

Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C., & Weisbrod, M. (2004). Prefrontal-cingulate activation during executive control: Which comes first Cognitive. Brain Research, 18, 278-287.

23.

Pulvermüller F, Härle M, & Hummel F (2001). Walking or talking? Behavioral and neurophysiological correlates of action verb processing. Brain Lang, 78(2), 143-168.

24.

Rebai, M., Bernard, C., & Lannou, J. (1997). The Stroop’s test evokes a negative brain potential, the N400. International Journal of Neuroscience, 91, 85-94.

25.

Rizzolatti G, Fadiga L, Gallese V, & Fogassi L (1996). Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res, 3(2), 131-141.

26.

Rizzolatti, G., and Craighero, L. (2004). The mirror neuron system. Annu. Rev. Neurosci. 27, 169-192.

27.

Rosenfeld, J. P., & Skogsberg, K. R. (2006). P300-based Stroop study with low probability and target Stroop oddballs: The evidence still favors the response selection hypothesis. International Journal of Psychophysiology, 60, 240 -250.

28.

Sato, M., Mengarelli, M., Riggio, L., Gallese, V., and Buccino, G. (2008). Task related modulation of the motor system during language processing. Brain Lang. 105, 83-90.

29.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662.

30.

Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M, Scifo P, Fazio F, Rizzolatti G, Cappa SF, & Perani D. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. J Cogn Neurosci, 17(2), 273 -281.

31.

Xiao, X., Zhang, Q., Jia, L., Zhang, Y., & Luo, J. (2010). Temporal course of cognitive control in a picture-word interference task. Neuroreport, 21(2), 104.

32.

Zwaan RA, & Taylor LJ (2006). Seeing, acting, understanding: motor resonance in language comprehension. J Exp Psychol Gen, 135(1), 1- 11.

한국심리학회지: 인지 및 생물