바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

유동 지능에 따른 인지 제어 관련 뇌 활동의 차이 분석

The Neural Mechanism of Cognitive Control as a Function of Individual Differences in Fluid Intelligence

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2011, v.23 no.3, pp.431-463
https://doi.org/10.22172/cogbio.2011.23.3.008
조수현 (중앙대학교)

초록

본 연구는 유동 지능(fluid intelligence)의 개인차에 따라 추론 중의 인지 제어(cognitive control) 기제와 관련한 뇌 활동이 어떻게 조절되는지를 알아보았다. 본 연구에서는 인지적 간섭의 강도가 세 단계로 조작된 유추 추론 (analogical reasoning) 과제가 사용되었다. 인지적 간섭(cognitive interference)의 강도가 높은(낮은) 시행에서는 올바른 추론을 위해 간섭 해결을 위한 인지 제어가 더 많이(적게) 필요하였다. 실험 1에서는 인지적 간섭의 강도에 따른 행동적 수행의 변화가 확인되었다. 피험자들은 인지 제어가 많이 필요한 추론 시행의 경우 그렇지 않은 경우와 비교하여 더 많은 오류를 범했으며 문제 풀이 시간도 길었다. 실험 2에서는 기능적 자기 공명 영상 기기(fMRI)를 이용하여 추론 중 간섭을 해결하기 위한 인지 제어 기능이 강하게 요구될 때 유동 지능이 높은 피험자들에게서 활동 수준이 더 크게 증가하는 뇌 영역을 관찰하였다. 유동 지능이 높을수록 유추 추론 시 인지 제어가 강하게 요구될 때, 양반구의 전 대상 피질(anterior cingulate cortex), 시각 피질(visual cortex), 내측 전두극(medial frontal pole), 우반구의 외측 전전두 피질(lateral prefrontal cortex), 중뇌(midbrain)의 복측 피개 영역(ventral tegmental area) 등에서 뇌 혈류 수준이 더 크게 증가하였다. 본 연구에서는 다양한 맥락의 인지 제어 및 추론 시에 활동이 증가하는 것으로 알려진 외측 전전두 피질과 전 대상 피질, 시각 피질이, 추론 중 인지 제어 기제의 작용과도 관련될 뿐 아니라 유동 지능이 높을수록 그 활동 수준의 증가량이 크다는 것이 확인되었다. 한편, 일반적으로 인지 과제 수행 시에 활동 수준이 기저선보다 저하되는(deactivate) 영역에 속하는 내측 전전두 피질(medial prefrontal cortex)은 유동 지능이 높을수록 활동 수준이 덜 억제(less deactivate) 되었다. 이는 정보 처리의 역량이 우수한 피험자는 인지 과제 수행 시에도 뇌의 초기 모드 활동이 지속될 수 있다는 기존의 이론을 뒷받침한다.

keywords
fluid intelligence, fMRI, reasoning, individual differences, cognitive control, 유동 지능, 기능성 자기 공명 영상, 추론, 인지 제어, 개인차

Abstract

The present study examined how individual differences in fluid intelligence modulates the neural mechanism of cognitive control during reasoning. A four term verbal analogical reasoning task was used with a variation in the degree to which cognitive control was needed to overcome interference from semantic relationships between words. During trials entailing strong cognitive interference, there was a stronger need for cognitive control. In Experiment 1, subjects made more errors and took longer to solve analogies when there was a greater need for cognitive control. In Experiment 2, functional magnetic resonance imaging was used to investigate the relationship between individual differences in fluid intelligence and the neural mechanism of cognitive control. Individuals with a higher fluid intelligence engaged bilateral anterior cingulate cortex, visual cortex, medial frontal pole, right lateral prefrontal cortex, basal ganglia and the ventral tegmental area of the midbrain to a greater extent when the need for cognitive control increased. These results indicate that fluid intelligence modulates the activity of the lateral prefrontal cortex, anterior cingulate cortex and the visual cortex which are commonly activated across various studies of cognitive control and reasoning and that individuals with higher fluid intelligence showed elevated activity levels in these regions. On the other hand, the medial prefrontal cortex which is one of the commonly deactivated regions of the brain showed less deactivation in individuals with higher fluid inteligence. This finding supports previous studies proposing that the default mode activity of the brain may be sustained during task performance in individuals with a high capacity for information processing.

keywords
fluid intelligence, fMRI, reasoning, individual differences, cognitive control, 유동 지능, 기능성 자기 공명 영상, 추론, 인지 제어, 개인차

참고문헌

1.

Arthur, W., Travis, C., Paul, D. S., & Sanchez-Ku, M. L. (1999). College-sample psychometric and normative data on a short form of the raven advanced progressive matrices test. Journal of Psychoeducational Assessment, 17, 354-361.

2.

Atherton, M., Zhuang, J., Bart, W. M., Hu, X., & He, S. (2003). A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research, 16: 26-31.

3.

Baddeley, A. D., & Hitch, G. J. (1974). Working Memory. In The psychology of learning and motivation. (Bower, G. A., ed.), pp.47-89, Academic Press: New York.

4.

Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4, 417-423.

5.

Baddeley, A. D. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4, 829-839.

6.

Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47: 907-918.

7.

Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. Neuroimage, 20: 1052 -1063.

8.

Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans on Medical Imaging, 23,137-152.

9.

Braver, T. S., & Cohen, J. D. (2000). On the control of control: the role of dopamine in regulating prefrontal function and working memory. In Monsell, S., Driver, J. (Eds.), Attention and Performance XVIII, (pp.713-737). Cambridge, MA: MIT Press.

10.

Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. Neuroimage, 15, 523-536.

11.

Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In Conway, A, Jarrold, C, Kane, M, Miyake, A, Towse, J. (Eds.), Variation in Working Memory. Oxford University Press.

12.

Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239-249.

13.

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1-22.

14.

Chen, X., Zhang, D., Zhang, X., Li, Z., Meng, X., He, S., & Hu, X. (2003). A functional MRI study of high-level cognition. II. The game of GO. Cognitive Brain Research, 16, 32-7.

15.

Cho, S., Holyoak, K. J., & Cannon, T. D. (2007a). Analogical reasoning in working memory: Resources shared among relational integration, interference resolution, and maintenance. Memory & Cognition, 35, 1445 -1455.

16.

Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage, 14, 1136-1149.

17.

Cohen, J. D., Braver, T. S., Brown, J. W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Current Opinion in Neurobiology, 12, 223-229.

18.

Dale, A. M., 1998. Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109-114.

19.

D'Esposito, M., Postle, B. R., Jonides, J. & Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences USA, 96, 7514-7519.

20.

Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261-268.

21.

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., & Emslie, H. (2000). A neural basis for general intelligence. Science, 289: 457-460.

22.

Fangmeier, T., Knauff, M., Ruff, C. C., & Sloutsky, V. (2006). FMRI evidence for a three-stage model of deductive reasoning. Journal of Cognitive Neuroscience, 18, 320-34.

23.

Gabrieli, J. D. E. (1996). Memory systems analyses of mnemonic disorders in aging and age related disease. Proceedings of the National Academy of Sciences of the United States of America, 93, 13534-13540.

24.

Geake, J. G., & Hansen, P. C. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26, 555-564.

25.

Gläscher, J., Tranel, D., Paul, L. K., Rudrauf, D., Rorden, C., Hornaday, A., Grabowski, T., Damasio, H., and Adolphs, R. (2009). Lesion mapping of cognitive abilities linked to intelligence. Neuron, 61, 681-691.

26.

Gläscher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., and Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proc Natl Acad Sci U S A, 107, 4705–4709.

27.

Goel, V. & Dolan, R. J. (2003). Explaining modulation of reasoning by belief. Cognition, 87, B11-B22.

28.

Gray, J. R., Chabris, C. F., & Braver, T. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316-22.

29.

Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: why it matters. Nature Reviews Neuroscience, 5, 471-482.

30.

Green, A. E., Fugelsang, J. A., Kraemer, D. J., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096, 125-137.

31.

Greicius, M. D. & Menon, V. (2004). Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16, 1484-92.

32.

Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001a). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 4259-4264.

33.

Gusnard, D. A., & Raichle, M. E. (2001b). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685-694.

34.

Haier, R., J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429-441.

35.

Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803-865.

36.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104, 427-466.

37.

Hummel, J. E. & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, 110, 220-264.

38.

Holyoak, K. J. (2005). Analogy. In: Holyoak, K. J., Morrison, R. G. (Eds.), The Cambridge Handbook of Thinking and Reasoning. Cambridge, UK: Cambridge University Press. pp.117-142.

39.

Jenkinson, M., Bannister, P. R., Brady, J. M., & Smith, S. M. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825-841.

40.

Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences USA, 95, 8410-8413.

41.

Jonides, J., Marshuetz, C., Smith, E. E., Reuter-Lorenz, P. A., Koeppe, R. A., Hartley, A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory. Journal of Cognitive Neuroscience, 12, 188-196.

42.

Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135-154.

43.

Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working memory capacity, executive attention, general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637-671.

44.

Knauff, M., Mulack, T., Kassubek, J., Salih, H. R., & Greenlee, M. W. (2002). Spatial imagery in deductive reasoning: a functional MRI study. Cognitive Brain Research, 13, 203-212.

45.

Knauff, M., Fangmeier, T., Ruff, C. C., & Johnson-Laird, P. N. (2003). Reasoning, models, and images: Behavioral measures and cortical and cortical activity. Journal of Cognitive Neuroscience, 15, 559-573.

46.

Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148-151.

47.

Konishi, S., Nakajima, K., Uchida, I., Sekihara, K., & Miyashita, Y. (1998). No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. European Journal of Neuroscience, 10, 1209-1213.

48.

Krawczyk, D. C., Morrison, R. G., Viskontas, I. V., Holyoak, K. J., Chow, T. W., Mendez, M., Miller, B. L., & Knowlton, B. J. (2008). Distraction during relational reasoning: The role of prefrontal cortex in interference control. Neuropsychologia. 46, 2020-32.

49.

Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cerebral Cortex, 12, 477-485.

50.

Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S., & Kim, K. (2006). Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. Neuroimage, 29, 578-586.

51.

Luo, Q., Perry, C., Peng, D., Jin, Z., Xu, D., Ding, G., & Xu, S. (2003). The neural substrate of analogical reasoning: An fMRI study. Cognitive Brain Research, 17, 527-534.

52.

McNab, F. & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103-107.

53.

Milham, M. P., Banich, M. T., Webb, A., Barad, V., Cohen, N. J., Wszalek, T., & Kramer, A. F. (2001). The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on the nature of conflict. Brain Research Cognitive Brain Research, 12, 467-473.

54.

Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59-65.

55.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.

56.

Montague, P. R, Hyman, S, E. & Cohen, J, D. (2004). Computational roles for dopamine in behavioural control. Nature, 431, 760-767.

57.

Morrison, R. G., Holyoak, K. J., & Truong, B. (2001). Working-memory modularity in analogical reasoning. In J. D. Moore & K. Stenning (Eds.), Proceedings of the Twenty-Third Annual Conference of the Cognitive Science Society, (pp.663-668). Mahwah, NJ: Erlbaum.

58.

Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., Hummel, J. E., Chow, T. W., Miller, B. L., & Knowlton, B. J. (2004). A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. Journal of Cognitive Neuroscience, 16, 260-271.

59.

Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, and Behavioral Neuroscience, 7, 1-17.

60.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). The University of South Florida word association, rhyme, and word fragment norms. http://www.usf.edu/FreeAssociation/

61.

Nelson, J. K., Reuter-Lorenz, P. A., Sylvester, C. Y., Jonides, J., Smith, E. E. (2003). Dissociable Neural Mechanisms Underlying Response-Based and Familiarity-Based Conflict in Working Memory. Proceedings of the National Academy of Sciences USA, 100, 11171-11175.

62.

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapping, 15, 1-25.

63.

Parsons, L., M., & Osherson, D. (2001). New evidence for distinct right and left brain systems for deductive versus probabilistic reasoning. Cerebral Cortex, 11, 954-965.

64.

Pirot, S., Godbout, R., Mantz, J., Tassin, J. P., Glowinski, J., & Thierry, A. M. (1992). Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and gabaergic components. Neuroscience, 49, 857-865.

65.

Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33, 43-63.

66.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 676-682.

67.

Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184-194.

68.

Raven, J. C. (1938). Progressive matrices: A perceptual test of intelligence. London: H.K. Lewis.

69.

Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children's development of analogical reasoning: insights from scene analogy problems. Journal of Experimental Child Psychology, 94, 249-273.

70.

Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., & Passingham, R. E. (2000). The prefrontal cortex: response selection or maintenance within working memory? Science, 288, 1656-1660.

71.

Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403-428.

72.

Schmithorst, V. J., & S. K. Holland (2006). Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. Neuroimage 31, 1366-79.

73.

Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology, 28, 207-218.

74.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M. & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1), 208-219, 2004.

75.

Snow, R. E., Kyllonen, P. C. & Marshalek, B. (1984). The topography of ability and learning correlations. In: Sternberg, R.J. (Ed), Advances in the psychology of human intelligence, Vol. 2 (pp.47-103). Hillsdale, NJ: Erlbaum.

76.

Spearman, C. (1904). General intelligence, objectively determined and measured. American Journal of Psychology, 15, 201-293.

77.

Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning: The componential analysis of human abilities. Hillsdale, NJ: Erlbaum.

78.

Sternberg, R. J & Nigro, G. (1980). Developmental patterns in the solution of verbal analogies. Child Development, 51, 27-38.

79.

Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276-315.

80.

Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme.

81.

Thompson-Schill, S. L., Jonides, J., Marshuetz, C., Smith, E. E., D'Esposito, M., Kan, I. P., Knight, R. T., & Swick, D. (2002). Effects of frontal lobe damage on interference effects in working memory. Cognitive Affective Behavioral Neuroscience, 2, 109-120.

82.

Viskontas, I. V., Morrison, R. G., Holyoak, K. J., Hummel, J. E., & Knowlton, B. J. (2004). Relational integration, inhibition and analogical reasoning in older adults. Psychology and Aging, 19, 581-591.

83.

Wandell, B. A. (1999). Computational neuroimaging of human visual cortex. Annual Review of Neuroscience, 22, 145-173.

84.

Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive Affective Behavioral Neuroscience, 3, 255-274.

85.

Wagner, A. D., Pare-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron, 31, 329-338.

86.

Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., de Menezes Santos, M., Thomas, C. R., & Miller, B. L. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119-125.

87.

Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., & Bunge, S. A. (2008). Brain is to thought as stomach is to ??: Investigating the role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive Neuroscience, 20, 682-693.

88.

Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A., et al. (2000). Toward neuroanatomical models of analogy: a positron emission tomography of analogical mapping. Cognitive Psychology, 40, 173-197.

89.

Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for fMRI group analysis using Bayesian inference. Neuroimage, 21, 1732-1747.

90.

Worsley, K. J., Evans, A. C., Marrett, S. & Neelin, P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism, 12, 900-918.

91.

박태진, 박선희, 김정희 (2008). 단어, 그림 및 추상패턴의 일화적 부호화 기전: event-related fMRI 연구. 한국심리학회지 인지 및 생물, 20(3), 123~143.

한국심리학회지: 인지 및 생물