바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

장기 기억 과제에서 연합 항목의 범주 관계가 해마 활동에 미치는 영향

The Effects of Categorical Relationship Between Memory Items on Hippocampal Activation in a Long-term Associative Memory Task

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2012, v.24 no.4, pp.453-470
https://doi.org/10.22172/cogbio.2012.24.4.008
정주연 (연세대학교)
민수정 (연세대학교)
한상훈 (연세대학교)
이도준 (연세대학교)

초록

장기 기억 과제에서 연합쌍을 부호화하거나 인출할 때 항목들의 범주 관계가 해마의 신경 활동에 미치는 영향을 관찰하기 위해 기능성 자기공명영상(fMRI) 연구를 수행하였다. 뇌영상을 촬영하는 동안 학습 단계와 검사 단계로 구성된 실험 절차를 총 여덟 차례 반복 실시하였다. 각 단계마다 12개의 연합쌍이 화면에 출현하였다. 학습 단계의 연합쌍 중 절반은 검사 단계에서 그대로 제시되었고 나머지 절반은 재조합되어 제시되었다. 참가자들은 학습 단계에서 연합쌍을 외웠고 검사 단계에서 연합 재인 과제를 수행하였다. 범주 간 연합 조건의 연합쌍은 얼굴과 건물로 구성되었고 범주 내 연합 조건의 연합쌍은 얼굴과 얼굴, 또는 건물과 건물로 구성되었다. 실험 결과, 얼굴-건물 연합쌍에 대한 재인율은 얼굴-얼굴 연합쌍과 건물-건물 연합쌍에 대한 재인율과 다르지 않았다. 그러나 학습 및 검사 단계에서 범주 간 연합 조건에 대해 더 많이 활성화된 덩이소들이 해마를 비롯한 여러 뇌 영역에서 발견되었다. 학습 단계와 검사 단계에서 발견된 해마 덩이소들의 위치는 대체로 겹치지 않았지만, 학습 단계에서 발견된 우반구 해마의 덩이소들은 검사 단계에서도 비슷한 패턴으로 활성화되었다. 이러한 결과는 기억 항목의 지각적, 개념적 유사성이 해마 신경 활동에 영향을 끼친다는 점을 의미하며, 해마의 연합 기능을 규명하기 위해 범주에 대한 이해가 선행되어야 함을 시사한다.

keywords
hippocampus, associative memory, domain, fMRI, 해마, 연합 기억, 범주, 기능성자기공명영상(fMRI)

Abstract

An event-related functional magnetic resonance imaging (fMRI) experiment was conducted to test the effects of categorical relationship between memory items on hippocampal activation during encoding and retrieval of long-term associative memory. The experiment alternated a learning and a test phase eight times in the scanner. Each phase presented 12 associative pairs. During a test phase, a half of the learned pairs were repeated and the other half were rearranged. Participants determined if each pair was intact or rearranged. The between-domain association condition presented face-building pairs and the within-domain association condition presented either face-face or building-building pairs. As results, although behavioral performance of associative recognition was not different between the two conditions, many clusters in the hippocampus and the other brain areas showed greater activation in the between-domain association condition both during learning and test phases, confirming and extending a previous observation (Piekema et al., 2009). In the hippocampus, while such clusters were not spatially overlapped between learning and test phases, the clusters defined in the learning phase produced patterns of activation similar to the test phase. Overall, the current study demonstrates that perceptual and conceptual similarity of memory items affects hippocampal activity and suggests that theoretical and empirical understanding about domain is useful to investigate binding functions in the hippocampus.

keywords
hippocampus, associative memory, domain, fMRI, 해마, 연합 기억, 범주, 기능성자기공명영상(fMRI)

참고문헌

1.

강혜진, 강은주, 이정모, 나동규, 나덕렬, 이동수 (2005). 연합기억과제의 특성과 해마 활성화에 대한 fMRI 연구. 한국심리학회지: 실험, 17(4), 477-498.

2.

김은주, Kim, J. (2012). 스트레스와 해마: 뇌신경 기제의 시스템 분석. 한국심리학회지: 인지 및 생물, 24(1), 65-88.

3.

신맹식, (2010). 시스템 응고화 이론에 의한 내측 측두엽 손상 환자들의 기억 인출 또는 실패에 대한 역동적 해석. 한국심리학회지: 인지 및 생물, 22(4), 549-571.

4.

Addis, D. R., Moscovitch, M., Crawley, A. P., & McAndrews, M. P. (2004). Recollective qualities modulate hippocampal activation during autobiographical memory retrieval. Hippocampus, 14(6), 752-762.

5.

Brett, M., Anton, J. -L., Valabregue, R., & Poline, J. -B. (2002). Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan.

6.

Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625-641.

7.

Davachi, L., & Wagner, A. D. (2002). Hippocampal contributions to episodic encoding: insights from relational and item- based learning. Journal of Neurophysiology, 88(2), 982-990.

8.

Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 41-50.

9.

Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109-120.

10.

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123-152.

11.

Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neuroscience, 3(11), 1149-1152.

12.

Epstein, R. A., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601.

13.

Gärdenfors, P. (2000). Conceptual spaces: the geometry of thought. Cambridge, Mass.: MIT Press.

14.

Greene, A. J., Gross, W. L., Elsinger, C. L., & Rao, S. M. (2006). An FMRI analysis of the human hippocampus: inference, context, and task awareness. Journal of Cognitive Neuroscience, 18(7), 1156-1173.

15.

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425-2430.

16.

Henke, K., Buck, A., Weber, B., & Wieser, H. G. (1997). Human hippocampus establishes associations in memory. Hippocampus, 7(3), 249 -256.

17.

Ishai, A., Ungerleider, L. G., Martin, A., & Haxby, J. V. (2000). The representation of objects in the human occipital and temporal cortex. Journal of Cognitive Neuroscience, 12 Suppl 2, 35-51.

18.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302 -4311.

19.

Kirwan, C. B., & Stark, C. E. (2004). Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus, 14(7), 919-930.

20.

Kobayashi, Y., & Amaral, D. G. (2003). Macaque monkey retrosplenial cortex: II. Cortical afferents. Journal of Comparative Neurology, 466(1), 48-79.

21.

Konkel, A., & Cohen, N. J. (2009). Relational memory and the hippocampus: representations and methods. Frontiers in Neuroscience, 3(2), 166-174.

22.

Konkel, A., Warren, D. E., Duff, M. C., Tranel, D. N., & Cohen, N. J. (2008). Hippocampal amnesia impairs all manner of relational memory. Frontiers in Human Neuroscience, 2, 15.

23.

Lavenex, P., & Amaral, D. G. (2000). Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus, 10(4), 420-430.

24.

Lavenex, P., Suzuki, W. A., & Amaral, D. G. (2002). Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. Journal of Comparative Neurology, 447(4), 394-420.

25.

Levy, W. B. (1996). A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus, 6(6), 579-590.

26.

Lou, H. C., Luber, B., Crupain, M., Keenan, J. P., Nowak, M., Kjaer, T. W., Sackeim, H. A., & Lisanby, S. H. (2004). Parietal cortex and representation of the mental Self. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6827- 6832.

27.

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas- based interrogation of fMRI data sets. Neuroimage, 19(3), 1233-1239.

28.

Mandzia, J. L., Black, S. E., McAndrews, M. P., Grady, C., & Graham, S. (2004). fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly. Human Brain Mapping, 21(1), 1-14.

29.

Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B.,Villringer, A., Castellanos, F. X., Milham, M. P., & Petrides, M. (2009). Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20069-20074.

30.

Mayes, A. R., Holdstock, J. S., Isaac, C. L., Montaldi, D., Grigor, J., Gummer, A., Cariga, P., Downes, J. J., Tsivilis, D., Gaffan, D., Gong, Q., & Norman, K. A. (2004). Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus, 14(6), 763-784.

31.

Mayes, A. R., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126- 135.

32.

McNaughton, B., & Morris, R. G. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10(10), 408-415.

33.

Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 69-89.

34.

O'Reilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychological Review, 108(2), 311-345.

35.

Palmeri, T. J., & Gauthier, I. (2004). Visual object understanding. Nature Reviews Neuroscience, 5(4), 291-303.

36.

Piekema, C., Kessels, R. P., Rijpkema, M., & Fernández, G. (2009). The hippocampus supports encoding of between-domain associations within working memory. Learning and Memory, 16(4), 231-234.

37.

Piekema, C., Rijpkema, M., Fernández, G., & Kessels, R. P. (2010). Dissociating the neural correlates of intra-item and inter-item working-memory binding. PLoS ONE, 5(4), e10214.

38.

Preston, A. R., Shrager, Y., Dudukovic, N. M., & Gabrieli, J. D. (2004). Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus, 14(2), 148-152.

39.

Ranganath, C., & Blumenfeld, R. S. (2005). Doubts about double dissociations between short- and long-term memory. Trends in Cognitive Sciences, 9(8), 374-380.

40.

Rorden, C., Karnath, H. O., & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19(7), 1081-1088.

41.

Rugg, M. D., Otten, L. J., & Henson, R. N. (2002). The neural basis of episodic memory: evidence from functional neuroimaging. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1424), 1097-1110.

42.

Ryan, J. D., Althoff, R. R., Whitlow, S., & Cohen, N. J. (2000). Amnesia is a deficit in relational memory. Psychological Science, 11(6), 454-461.

43.

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11-21.

44.

Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22, 261-273.

45.

Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195-231.

46.

Staresina, B. P., & Davachi, L. (2009). Mind the gap: binding experiences across space and time in the human hippocampus. Neuron, 63(2), 267-276.

47.

Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2009). Cortical midline involvement in autobiographical memory. Neuroimage, 44(3), 1188-1200.

48.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289.

49.

Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal- parietal memory network. Journal of Neurophysiology, 96(6), 3517-3531.

50.

Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., Rosen, B. R., & Buckner, R. L. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281(5380), 1188-1191.

51.

Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445-453.

52.

Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory's echo: vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11125-11129.

53.

Zarahn, E., Aguirre, G. K., & D'Esposito, M. (1997). Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage, 5(3), 179-197.

한국심리학회지: 인지 및 생물